Effect of Flow Ratio and Angle of Friction on Dynamic Behavior of High-Strength Concrete

International Concrete Abstracts Portal

The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

  


Title: Effect of Flow Ratio and Angle of Friction on Dynamic Behavior of High-Strength Concrete

Author(s): Dipte Khan, Sumaiya Hassan, and Abu Sufian Md. Zia Hasan

Publication: Materials Journal

Volume: 123

Issue: 1

Appears on pages(s): 27-38

Keywords: angle of friction; Comité Euro-International du Béton (CEB) model; dynamic behavior; flow ratio; high-strength concrete (HSC)

DOI: 10.14359/51749247

Date: 1/1/2026

Abstract:
The effect of the parameters of a model, namely flow ratio (Κ) and angle of friction (β), is analyzed numerically on high-strength concrete (HSC) under a time-dependent pressure load. HSC, with a compressive strength of 120 MPa under static loading, when simulated under a rate of loading of 1100 GPa/s, shows an ultimate compressive strength ranging from 133 to 160 MPa. The dynamic stress and strain of HSC is proportional to the flow ratio and angle of friction. Multiple regression equations have been established to define the relationship between model parameters and dynamic strength, which are applicable for flow ratios between 0.80 and 1.00 and an angle of friction between 50 and 65 degrees.

Related References:

1. ACI Committee 363, “State-of-the-Art Report on High Strength Concrete (ACI 363R-92),” American Concrete Institute, Farmington Hills, MI, 1992, 55 pp.

2. ACI Committee 363, “Guide to Quality Control and Testing of High-Strength Concrete (ACI 363.2R-98),” American Concrete Institute, Farmington Hills, MI, 1998, 18 pp.

3. Faisal, F. W., and Ashour, S. A., “Mechanical Properties of High-Strength Fiber Reinforced Concrete,” ACI Materials Journal, V. 89, No. 5, Sept.-Oct. 1992, pp. 449-455.

4. Ou, Y.-C., and Kurniawan, D. P., “Shear Behavior of Reinforced Concrete Columns with High-Strength Steel and Concrete,” ACI Structural Journal, V. 112, No. 1, Jan.-Feb. 2015, pp. 35-45.

5. Logan, A.; Choi, W.; Mirmiran, A.; Rizkalla, S.; and Zia, P., “Short-Term Mechanical Properties of High-Strength Concrete,” ACI Materials Journal, V. 106, No. 5, Sept.-Oct. 2009, pp. 413-418.

6. Mahaini, Z.; Abed, F.; Alhoubi, Y.; and Elnassar, Z., “Experimental and Numerical Study of the Flexural Response of Ultra High Performance Concrete (UHPC) Beams Reinforced with GFRP,” Composite Structures, V. 315, 2023, p. 117017. doi: 10.1016/j.compstruct.2023.117017

7. Solhmirzaei, R., and Kodur, V., “A Numerical Model for Tracing Structural Response of Ultra-High Performance Concrete Beams,” Advances in Structure Mechanics and Finite Element Modelling, V. 2, No. 4, 2021, pp. 448-466. doi: 10.3390/modelling2040024

8. Abbas, Y. M., “Shear Behavior of Ultra-High-Performance Reinforced Concrete Beams – Finite Element and Uncertainty Quantification Study,” Structures, V. 47, Jan, 2023, pp. 2365-2380. doi: 10.1016/j.istruc.2022.12.060

9. Zhang, J.; Zhang, M.; Liu, X.; Tao, X.; and Cao, W., “Experiment and Numerical Analysis on Seismic Performance of Resilient Shear Walls Using High Strength Recycled Aggregate Concrete,” Journal of Building Engineering, V. 52, July, 2022, p. 104477. doi: 10.1016/j.jobe.2022.104477

10. Temsah, Y.; Jahami, A.; Khatib, J.; and Sonebi, M., “Numerical Derivation of Iso-Damaged Curve for a Reinforced Concrete Beam Subjected to Blast Loading,” MATEC Web of Conferences, V. 149, 2018, p. 02016. doi: 10.1051/matecconf/201814902016

11. Temsah, Y.; Jahami, A.; Khatib, J.; and Sonebi, M., “Numerical Analysis of a Reinforced Concrete Beam under Blast Loading,” MATEC Web of Conferences, V. 149, 2018, p. 02063. doi: 10.1051/matecconf/201814902063

12. Ali, L.; Isleem, H. F.; Bahrami, A.; Jha, I.; Zou, G.; Kumar, R.; Sadeq, A. M.; and Jahami, A., “Integrated Behavioural Analysis of FRP-Confined Circular Columns Using FEM and Machine Learning,” Composites, Part C: Open Access, V. 13, 2024, p. 100444. doi: 10.1016/j.jcomc.2024.100444

13. Li, Q. M., and Meng, H., “About the Dynamic Strength Enhancement of Concrete-Like Materials in a Split Hopkinson Pressure Bar Test,” International Journal of Solids and Structures, V. 40, No. 2, 2003, pp. 343-360. doi: 10.1016/S0020-7683(02)00526-7

14. Minh, H.-L.; Khatir, S.; Wahab, M. A.; and Cuong-Le, T., “A Concrete Damage Plasticity Model for Predicting the Effects of Compressive High-Strength Concrete under Static and Dynamic Loads,” Journal of Building Engineering, V. 44, 2021, p. 103239. doi: 10.1016/j.jobe.2021.103239

15. Dassault Systèmes, “Abaqus/Explicit User’s Manual (Version 2021),” Vélizy-Villacoublay, France, 2021.

16. Gluchowski, A.; Miturski, M.; and Sas, W., “The Friction and Dilatancy Angle of Recycled Concrete Aggregate,” IOP Conference Series. Materials Science and Engineering, V. 471, No. 4, 2019, p. 042023. doi: 10.1088/1757-899X/471/4/042023

17. Farzad, M.; Shafieifar, M.; and Azizinamini, A., “Experimental and Numerical Study on Bond Strength between Conventional Concrete and Ultra High-Performance Concrete (UHPC),” Engineering Structures, V. 186, 2019, pp. 297-305. doi: 10.1016/j.engstruct.2019.02.030

18. Malm, R., “Shear Cracks in Concrete Structures Subjected to In-Plane Stresses,” PhD dissertation, Royal Institute of Technology, Stockholm, Sweden, 2006.

19. Jiang, J.-F., and Wu, Y.-F., “Identification of Material Parameters for Drucker–Prager Plasticity Model for FRP Confined Circular Concrete Columns,” International Journal of Solids and Structures, V. 49, No. 3-4, 2012, pp. 445-456. doi: 10.1016/j.ijsolstr.2011.10.002

20. Hamid, R.; Hasan, A. S. M. Z.; and Ariffin, A. K., “Sensitivity of Model Parameter on Dynamic Behavior Simulation of HPC,” Journal of Materials in Civil Engineering, ASCE, V. 22, No. 12, 2010, pp. 1244-1251. doi: 10.1061/(ASCE)MT.1943-5533.0000131

21. Öztekin, E.; Pul, S.; and Hüsem, M., “Experimental Determination of Drucker-Prager Yield Criterion Parameters for Normal and High Strength Concretes under Triaxial Compression,” Construction and Building Materials, V. 112, 2016, pp. 725-732. doi: 10.1016/j.conbuildmat.2016.02.127

22. Park, S. W.; Xia, Q.; and Zhou, M., “Dynamic Behavior of Concrete at High Strain Rates and Pressures: II. Numerical Simulation,” International Journal of Impact Engineering, V. 25, No. 9, 2001, pp. 887-910. doi: 10.1016/S0734-743X(01)00021-5

23. Dahl, K. K. B., “A Failure Criterion for Normal and High Strength Concrete,” PhD thesis, Technical University of Denmark, Lyngby, Denmark, 1992.

24. Raza, A.; Khan, Q. Z.; and Ahmad, A., “Numerical Investigation of Load‐Carrying Capacity of GFRP‐Reinforced Rectangular Concrete Members Using CDP Model in ABAQUS,” Advances in Civil Engineering, V. 2019, No. 1, 2019, p. 1745341. doi: 10.1155/2019/1745341

25. Yu, T.; Teng, J. G.; Wong, Y. L.; and Dong, S. L., “Finite Element Modeling of Confined Concrete-I: Drucker–Prager Type Plasticity Model,” Engineering Structures, V. 32, No. 3, 2010, pp. 665-679. doi: 10.1016/j.engstruct.2009.11.014

26. Karabinis, A. I.; Rousakis, T. C.; and Manolitsi, G. E., “3D Finite-Element Analysis of Substandard RC Columns Strengthened by Fiber-Reinforced Polymer Sheets,” Journal of Composites for Construction, ASCE, V. 12, No. 5, 2008, pp. 531-540. doi: 10.1061/(ASCE)1090-0268(2008)12:5(531)

27. Wee, T. H.; Chin, M. S.; and Mansur, M. A., “Stress-Strain Relationship of High-Strength Concrete in Compression,” Journal of Materials in Civil Engineering, ASCE, V. 8, No. 2, 1996, pp. 70-76. doi: 10.1061/(ASCE)0899-1561(1996)8:2(70)

28. Mane, B. V., and Patil, A. N., “An Experimental Study of the Relationship between Modulus of Elasticity, Poisson’s Ratio, and the Mechanical Properties of High-Performance Concrete,” Discover Civil Engineering, V. 1, No. 1, 2024, p. 4. doi: 10.1007/s44290-024-00003-z

29. Iravani, S., “Mechanical Properties of High-Performance Concrete,” ACI Materials Journal, V. 93, No. 5, Sept.-Oct. 1996, pp. 416-426.

30. Perenchio, W. F., and Klieger, P., Some Physical Properties of High-Strength Concrete, American Cement Association, Washington, DC, 1978.

31. Davids, W. G.; Wang, Z.; Turkiyyah, G.; Mahoney, J. P.; and Bush, D., “Three-Dimensional Finite Element Analysis of Jointed Plain Concrete Pavement with EverFE2.2,” Transportation Research Record: Journal of the Transportation Research Board, V. 1853, No. 1, 2003, pp. 92-99. doi: 10.3141/1853-11

32. Najafgholipour, M. A.; Dehghan, S. M.; Dooshabi, A.; and Niroomandi, A., “Finite Element Analysis of Reinforced Concrete Beam-Column Connections with Governing Joint Shear Failure Mode,” Latin American Journal of Solids and Structures, V. 14, No. 7, 2017, pp. 1200-1225. doi: 10.1590/1679-78253682

33. Hany, N. F.; Hantouche, E. G.; and Harajli, M. H., “Finite Element Modeling of FRP-Confined Concrete Using Modified Concrete Damaged Plasticity,” Engineering Structures, V. 125, 2016, pp. 1-14. doi: 10.1016/j.engstruct.2016.06.047

34. Nguyen, K. T.; Ahn, N.; Le, T. A.; and Lee, K., “Theoretical and Experimental Study on Mechanical Properties and Flexural Strength of Fly Ash-Geopolymer Concrete,” Construction and Building Materials, V. 106, 2016, pp. 65-77. doi: 10.1016/j.conbuildmat.2015.12.033

35. Miles, J., “R‐Squared, Adjusted R‐Squared,” Encyclopedia of Statistics in Behavioral Science, 2005. doi: 10.1002/0470013192.bsa526

36. Sthle, L., and Wold, S., “Analysis of Variance (ANOVA),” Chemometrics and Intelligent Laboratory Systems, V. 6, No. 4, 1989, pp. 259-272. doi: 10.1016/0169-7439(89)80095-4

37. fib, “Concrete Structures under Impact and Impulsive Loading,” CEB Bulletin No. 187, International Federation for Structural Concrete, Lausanne, Switzerland, 1988, 184 pp.

38. Distler, P.; Sadegh-Azar, H.; and Heckötter, C., “Enhancement of Engineering Models for Simulation of Soft, and Hard Projectile Impact on Reinforced Concrete Structures,” Nuclear Engineering and Design, V. 378, 2021, p. 111187. doi: 10.1016/j.nucengdes.2021.111187


ALSO AVAILABLE IN:

Electronic Materials Journal