Title:
Thermodynamic Modeling of Chemical Acidification of Cementitious Paste (Open Source)
Author(s):
Feyza Nur Sahan, W. Jason Weiss, and O. Burkan Isgor
Publication:
Materials Journal
Volume:
122
Issue:
5
Appears on pages(s):
73-80
Keywords:
acid attack; calcium-silicate-hydrate (C-S-H); limestone (LS); portland-limestone cement (PLC); supplementary cementitious materials (SCMs); thermodynamic modeling
DOI:
10.14359/51749035
Date:
9/1/2025
Abstract:
The role of limestone (LS) powder replacement and changes in C-S-H due to pozzolanic reactions on the acid resistance of cementitious pastes are studied using thermodynamic modeling. Simulations are performed under equilibrium conditions while hydration products were exposed to increasing levels of sulfuric acid. LS replacement doesn’t show sacrificial characteristics against sulfuric acid attack, and LS acidification starts only after full consumption of portlandite, and most C-S-H. Increased LS replacement causes the dilution of the formed portlandite and C-S-H volumes, which results in their full consumption at lower acid concentrations than mixtures without LS replacement. Pozzolanic reactions of SCMs result in C-S-H phases with lower Ca/Si than OPC-only counterparts, increasing acid resistance. However, highly reactive and/or high-volume SCM replacements might further decrease the available portlandite, reducing the buffer acid resistance capacity. This issue is particularly critical for portland limestone cement-based systems.
Related References:
1. Tennis, P. D.; Thomas, M. D. A.; and Weiss, W. J., “State-of-the-Art Report on Use of Limestone in Cements at Levels of up to 15%,” PCA R&D SN3148, American Cement Association, Skokie, IL, 2011, 78 pp.
2. Rahla, K. M.; Mateus, R.; and Bragança, L., “Comparative Sustainability Assessment of Binary Blended Concretes Using Supplementary Cementitious Materials (SCMs) and Ordinary Portland Cement (OPC),” Journal of Cleaner Production, V. 220, May 2019, pp. 445-459. doi: 10.1016/j.jclepro.2019.02.010
3. Ghrici, M.; Kenai, S.; and Said-Mansour, M., “Mechanical Properties and Durability of Mortar and Concrete Containing Natural Pozzolana and Limestone Blended Cements,” Cement and Concrete Composites, V. 29, No. 7, Aug. 2007, pp. 542-549. doi: 10.1016/j.cemconcomp.2007.04.009
4. Senhadji, Y.; Escadeillas, G.; Mouli, M.; Khelafi, H.; and Benosman, “Influence of Natural Pozzolan, Silica Fume and Limestone Fine on Strength, Acid Resistance and Microstructure of Mortar,” Powder Technology, V. 254, Mar. 2014, pp. 314-323. doi: 10.1016/j.powtec.2014.01.046
5. Chang, Z.-T.; Song, X.-J.; Munn, R.; and Marosszeky, M., “Using Limestone Aggregates and Different Cements for Enhancing Resistance of Concrete to Sulphuric Acid Attack,” Cement and Concrete Research, V. 35, No. 8, Aug. 2005, pp. 1486-1494. doi: 10.1016/j.cemconres.2005.03.006
6. Ramaswamy, K. P., and Santhanam, M., “Influence of Mineralogical Nature of Aggregates on Acid Resistance of Mortar,” Sixth International Conference on Durability of Concrete Structures (ICDCS 2018), P. A. M. Basheer, ed., July 2018, Leeds, West Yorkshire, UK, pp. 256-266.
7. Fernandes, I.; Pericão, M.; Hagelia, P.; Noronha, F.; Ribeiro, M. A.; and Maia, J., “Identification of Acid Attack on Concrete of a Sewage System,” Materials and Structures, V. 45, No. 3, Mar. 2012, pp. 337-350. doi: 10.1617/s11527-011-9769-y
8. Lertwattanaruk, P.; Sua-iam, G.; and Makul, N., “Effects of Calcium Carbonate Powder on the Fresh and Hardened Properties of Self-Consolidating Concrete Incorporating Untreated Rice Husk Ash,” Journal of Cleaner Production, V. 172, Jan. 2018, pp. 3265-3278. doi: 10.1016/j.jclepro.2017.10.336
9. Siad, H.; Mesbah, H. A.; Kamali-Bernard, S.; Khelafi, H.; and Mouli, M., “Influence of Natural Pozzolan on the Behavior of Self-Compacting Concrete Under Sulphuric and Hydrochloric Acid Attacks, Comparative Study,” Arabian Journal for Science and Engineering, V. 35, No. 1, 2010, pp. 183-195.
10. House, M. W., “Using Biological and Physico-Chemical Test Methods to Assess the Role of Concrete Mixture Design in Resistance to Microbially Induced Corrosion,” MS thesis, Purdue University, West Lafayette, IN, 2013, 172 pp.
11. Liu, S., and Wang, Z., “Effect of Limestone Powder on Acid Attack Characteristics of Cement Pastes,” Materials Science, V. 20, No. 4, 2014, pp. 503-508.
12. Ramezanianpour, A. A.; Zolfagharnasab, A.; Bahman Zadeh, F.; Estahbanati, S. H.; Boushehri, R.; Pourebrahimi, M. R.; and Ramezanianpour, A. M., “Effect of Supplementary Cementing Materials on Concrete Resistance Against Sulfuric Acid Attack,” High Tech Concrete: Where Technology and Engineering Meet - Proceedings of the 2017 fib Symposium, held in Maastricht, The Netherlands, June 12-14, 2017, D. A. Hordijk and M. Luković, eds., Springer, Cham, Switzerland, 2018, pp. 2290-2298.
13. Aydın, S.; Yazıcı, H.; Yiğiter, H.; and Baradan, B., “Sulfuric Acid Resistance of High-Volume Fly Ash Concrete,” Building and Environment, V. 42, No. 2, Feb. 2007, pp. 717-721. doi: 10.1016/j.buildenv.2005.10.024
14. Wanna, S.; Toochinda, P.; Saengsoy, W.; and Tangtermsirikul, S., “Deterioration in Sulfuric Acid of Cement Pastes Incorporating High CaO and Low CaO Fly Ashes,” Engineering Journal, V. 25, No. 2, 2021, pp. 71-83.
15. Bassuoni, M. T., and Nehdi, M. L., “Resistance of Self-Consolidating Concrete to Sulfuric Acid Attack with Consecutive pH Reduction,” Cement and Concrete Research, V. 37, No. 7, July 2007, pp. 1070-1084. doi: 10.1016/j.cemconres.2007.04.014
16. Wang, Z.; Chen, Y.; Xu, L.; Zhu, Z.; Zhou, Y.; Pan, F.; and Wu, K., “Insight into the Local C-S-H Structure and Its Evolution Mechanism Controlled by Curing Regime and Ca/Si Ratio,” Construction and Building Materials, V. 333, May 2022, Article No. 127388. doi: 10.1016/j.conbuildmat.2022.127388
17. Kunther, W.; Lothenbach, B.; and Skibsted, J., “Influence of the Ca/Si Ratio of the C–S–H Phase on the Interaction with Sulfate Ions and Its Impact on the Ettringite Crystallization Pressure,” Cement and Concrete Research, V. 69, Mar. 2015, pp. 37-49. doi: 10.1016/j.cemconres.2014.12.002
18. Kunther, W.; Ferreiro, S.; and Skibsted, J., “Influence of the Ca/Si Ratio on the Compressive Strength of Cementitious Calcium-Silicate-Hydrate Binders,” Journal of Materials Chemistry A – Materials for Energy and Sustainability, V. 5, No. 33, Sept. 2017, pp. 17401-17412. doi: 10.1039/C7TA06104H
19. Alizadeh, R.; Beaudoin, J. J.; and Raki, L., “Mechanical Properties of Calcium Silicate Hydrates,” Materials and Structures, V. 44, No. 1, Jan. 2011, pp. 13-28. doi: 10.1617/s11527-010-9605-9
20. Kulik, D. A.; Wagner, T.; Dmytrieva, S. V.; Kosakowski, G.; Hingerl, F. F.; Chudnenko, K. V.; and Berner, U. R., “GEM-Selektor Geochemical Modeling Package: Revised Algorithm and GEMS3K Numerical Kernel for Coupled Simulation Codes,” Computational Geosciences, V. 17, No. 1, Feb. 2013, pp. 1-24.
21. Wagner, T.; Kulik, D. A.; Hingerl, F. F.; and Dmytrieva, S. V., “GEM-Selektor Geochemical Modeling Package: TSolMod Library and Data Interface for Multicomponent Phase Models,” The Canadian Mineralogist, V. 50, No. 5, Oct. 2012, pp. 1173-1195. doi: 10.3749/canmin.50.5.1173
22. Lothenbach, B.; Kulik, D. A.; Matschei, T.; Balonis, M.; Baquerizo, L.; Dilnesa, B.; Miron, G. D.; and Myers, R. J., “Cemdata18: A Chemical Thermodynamic Database for Hydrated Portland Cements and Alkali-Activated Materials,” Cement and Concrete Research, V. 115, Jan. 2019, pp. 472-506. doi: 10.1016/j.cemconres.2018.04.018
23. Kulik, D. A., “Improving the Structural Consistency of C-S-H Solid Solution Thermodynamic Models,” Cement and Concrete Research, V. 41, No. 5, May 2011, pp. 477-495. doi: 10.1016/j.cemconres.2011.01.012
24. Damidot, D.; Barnett, S. J.; Glasser, F. P.; and Macphee, D., “Investigation of the CaO–Al2O3–SiO2–CaSO4–CaCO3–H2O System at 25°C by Thermodynamic Calculation,” Advances in Cement Research, V. 16, No. 2, Apr. 2004, pp. 69-76. doi: 10.1680/adcr.2004.16.2.69
25. Matschei, T.; Lothenbach, B.; and Glasser, F. P., “Thermodynamic Properties of Portland Cement Hydrates in the System CaO–Al2O3–SiO2–CaSO4–CaCO3–H2O,” Cement and Concrete Research, V. 37, No. 10, Oct. 2007, pp. 1379-1410. doi: 10.1016/j.cemconres.2007.06.002
26. Dilnesa, B. Z.; Lothenbach, B.; Renaudin, G.; Wichser, A.; and Kulik, D., “Synthesis and Characterization of Hydrogarnet Ca3(AlxFe1 − x)2(SiO4)y(OH)4(3 − y),” Cement and Concrete Research, V. 59, May 2014, pp. 96-111. doi: 10.1016/j.cemconres.2014.02.001
27. Schmidt, T.; Lothenbach, B.; Scrivener, K. L.; Romer, M.; Rentsch, D.; and Figi, R., “Conditions for Thaumasite Formation,” Proceedings of the 12th International Congress on the Chemistry of Cement (ICCC 2007), J. J. Beaudoin, J. M. Makar, and L. Raki, eds., Montréal, QC, Canada, July 2007, 12 pp.
28. Choudhary, A.; Bharadwaj, K.; Ghantous, R. M.; Isgor, O. B.; and Weiss, W. J., “Pozzolanic Reactivity Test of Supplementary Cementitious Materials,” ACI Materials Journal, V. 119, No. 2, Mar. 2022, pp. 255-268.
29. Gabrisová, A.; Havlica, J.; and Sahu, S., “Stability of Calcium Sulphoaluminate Hydrates in Water Solutions with Various pH Values,” Cement and Concrete Research, V. 21, No. 6, Nov. 1991, pp. 1023-1027. doi: 10.1016/0008-8846(91)90062-M
30. Allahverdi, A., and Škvára, F., “Acidic Corrosion of Hydrated Cement Based Materials: Part 2 – Kinetics of the Phenomenon and Mathematical Models,” Ceramics-Silikáty, V. 44, No. 4, 2000, pp. 152-160.
31. Cizer, Ö.; Elsen, J.; Feys, D.; Heirman, G.; Vandewalle, L.; Van Gemert, D.; Desmet, B.; Vantomme, J.; and De Schutter, G., “Microstructural Changes in Self-Compacting Concrete by Sulphuric Acid Attack,” Proceedings of the 13th International Congress on the Chemistry of Cement (ICCC 2011), A. Palomo, ed., Madrid, Spain, July 2011, pp. 436-442.
32. Cao, R.; Yang, J.; Li, G.; Liu, F.; Niu, M.; and Wang, W., “Resistance of the Composite Cementitious System of Ordinary Portland/Calcium Sulfoaluminate Cement to Sulfuric Acid Attack,” Construction and Building Materials, V. 329, Apr. 2022, Article No. 127171. doi: 10.1016/j.conbuildmat.2022.127171
33. Sahan, F. N.; Isgor, O. B.; and Weiss, W. J., “Acidification in Cement Paste in Which Clinker Is Partially Replaced with Limestone or Silica,” CEMENT, V. 16, June 2024, Article No. 100103. doi: 10.1016/j.cement.2024.100103
34. Sreenivasan, H.; Bernard, E.; Santos, H. S.; Nguyen, H.; Moukannaa, S.; Adediran, A.; Provis, J. L.; and Kinnunen, P., “A Critical Review of Magnesium Silicate Hydrate (M-S-H) Phases for Binder Applications,” Cement and Concrete Research, V. 178, Apr. 2024, Article No. 107462. doi: 10.1016/j.cemconres.2024.107462
35. Gu, L.; Visintin, P.; and Bennett, T., “Sulphuric Acid Resistance of Cementitious Materials: Multiscale Approach to Assessing the Degradation,” Journal of Materials in Civil Engineering, ASCE, V. 32, No. 7, July 2020, p. 04020171. doi: 10.1061/(ASCE)MT.1943-5533.0003261
36. Damion, T.; Cepuritis, R.; and Chaunsali, P., “Sulfuric Acid and Citric Acid Attack of Calcium Sulfoaluminate-Based Binders,” Cement and Concrete Composites, V. 130, July 2022, Article No. 104524. doi: 10.1016/j.cemconcomp.2022.104524
37. Beddoe, R. E., and Dorner, H. W., “Modelling Acid Attack on Concrete: Part I. The Essential Mechanisms,” Cement and Concrete Research, V. 35, No. 12, Dec. 2005, pp. 2333-2339. doi: 10.1016/j.cemconres.2005.04.002
38. Yuan, H.; Dangla, P.; Chatellier, P.; and Chaussadent, T., “Degradation Modeling of Concrete Submitted to Biogenic Acid Attack,” Cement and Concrete Research, V. 70, Apr. 2015, pp. 29-38. doi: 10.1016/j.cemconres.2015.01.002