Predicting Geopolymer Ultra-High-Performance Concrete Strength Using Machine Learning

International Concrete Abstracts Portal

The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

  


Title: Predicting Geopolymer Ultra-High-Performance Concrete Strength Using Machine Learning

Author(s): Kamran Aghaee and Kamal H. Khayat

Publication: Materials Journal

Volume: 122

Issue: 5

Appears on pages(s): 81-94

Keywords: compressive strength; ensemble machine learning; environment; geopolymer ultra-high-performance concrete; sustainability; ultra-high-performance concrete (UHPC)

DOI: 10.14359/51747873

Date: 9/1/2025

Abstract:
Ultra-high-performance geopolymer concrete (UHP-GPC) can exhibit high to exceptional strength. Given the importance of UHP-GPC’s mechanical properties, prediction of its 28-day compressive strength (fc′) remains insufficiently explored. This study predicts UHP-GPC’s fc′ based on alkali-activated materials, sand, fiber volume, and water-geopolymer binder and alkali activator ratios. Advanced statistical modeling and a spectrum of ensemble machine learning (ML) algorithms including random forest (RF), gradient boosting (GB), extreme gradient boosting (XGB), and stacking are used to predict UHP-GPC’s strength. The derived models reveal the significance of fiber, slag, and sand as the most significant factors influencing the 28-day fc′ of UHP-GPC. All the ML models demonstrate higher precision in forecasting fc′ of UHP-GPC compared to statistical modeling, with R2 peaking at 0.85. Equations are derived to predict the strength of UHP-GPC. This paper reveals that UHP-GPC with superior mechanical properties can be designed for further sustainability.

Related References:

1. Du, J.; Meng, W.; Khayat, K. H.; Bao, Y.; Guo, P.; Lyu, Z.; Abu-obeidah,    A.; Nassif, H.; and Wang, H., “New Development of Ultra-High-Performance Concrete (UHPC),” Composites Part B: Engineering, V. 224, 2021, p. 109220. doi: 10.1016/j.compositesb.2021.109220

2. Shah, H. A.; Yuan, Q.; and Photwichai, N., “Use of Materials to Lower the Cost of Ultra-High-Performance Concrete – A Review,” Construction and Building Materials, V. 327, 2022, p. 127045. doi: 10.1016/j.conbuildmat.2022.127045

3. Glanz, D.; Sameer, H.; Göbel, D.; Wetzel, A.; Middendorf, B.; Mostert, C.; and Bringezu, S., “Comparative Environmental Footprint Analysis of Ultra-High-Performance Concrete Using Portland Cement and Alkali-Activated Materials,” Frontiers in Built Environment, V. 9, 2023.

4. Zhu, Y.; Hussein, H.; Kumar, A.; and Chen, G., “A Review: Material and Structural Properties of UHPC at Elevated Temperatures or Fire Conditions,” Cement and Concrete Composites, V. 123, 2021, p. 104212. doi: 10.1016/j.cemconcomp.2021.104212

5. Wang, R.; Gao, X.; Huang, H.; and Han, G., “Influence of Rheological Properties of Cement Mortar on Steel Fiber Distribution in UHPC,” Construction and Building Materials, V. 144, 2017, pp. 65-73. doi: 10.1016/j.conbuildmat.2017.03.173

6. Wang, X.; Yu, R.; Song, Q.; Shui, Z.; Liu, Z.; Wu, S.; and Hou, D., “Optimized Design of Ultra-High Performance Concrete (UHPC) with a High Wet Packing Density,” Cement and Concrete Research, V. 126, 2019, p. 105921. doi: 10.1016/j.cemconres.2019.105921

7. Vance, K.; Kumar, A.; Sant, G.; and Neithalath, N., “The Rheological Properties of Ternary Binders Containing Portland Cement, Limestone, and Metakaolin or Fly Ash,” Cement and Concrete Research, V. 52, 2013, pp. 196-207. doi: 10.1016/j.cemconres.2013.07.007

8. Meng, W.; Valipour, M.; and Khayat, K. H., “Optimization and Performance of Cost-Effective Ultra-High Performance Concrete,” Materials and Structures, V. 50, No. 1, 2017, p. 29. doi: 10.1617/s11527-016-0896-3

9. Kang, S.-H.; Hong, S.-G.; and Moon, J., “Shrinkage Characteristics of Heat-Treated Ultra-High Performance Concrete and its Mitigation Using Superabsorbent Polymer Based Internal Curing Method,” Cement and Concrete Composites, V. 89, 2018, pp. 130-138. doi: 10.1016/j.cemconcomp.2018.03.003

10. Zhang, X.; Liu, Z.; and Wang, F., “Autogenous Shrinkage Behavior of Ultra-High Performance Concrete,” Construction and Building Materials, V. 226, 2019, pp. 459-468. doi: 10.1016/j.conbuildmat.2019.07.177

11. Alsalami, Z. H. A., and Abbas, F. H., “Ultra-High-Performance Concrete with Micro- to Nanoscale Reinforcement,” ACI Materials Journal, V. 121, No. 2, Mar. 2024, pp. 73-92. doi: 10.14359/51740369

12. Kim, G. W.; Oh, T.; Lee, S. K.; Banthia, N.; and Yoo, D.-Y., “Development of Ca-Rich Slag-Based Ultra-High-Performance Fiber-Reinforced Geopolymer Concrete (UHP-FRGC): Effect of Sand-to-Binder Ratio,” Construction and Building Materials, V. 370, 2023, p. 130630. doi: 10.1016/j.conbuildmat.2023.130630

13. Lao, J.-C.; Xu, L.-Y.; Huang, B.-T.; Dai, J.-G.; and Shah, S. P., “Strain-Hardening Ultra-High-Performance Geopolymer Concrete (UHPGC): Matrix Design and Effect of Steel Fibers,” Composites Communications, V. 30, 2022, p. 101081. doi: 10.1016/j.coco.2022.101081

14. Wongsa, A.; Wongkvanklom, A.; Tanangteerapong, D.; and Chindaprasirt, P., “Comparative Study of Fire-Resistant Behaviors of High-Calcium Fly Ash Geopolymer Mortar Containing Zeolite and Mullite,” Journal of Sustainable Cement-Based Materials, V. 9, No. 5, 2020, pp. 307-321. doi: 10.1080/21650373.2020.1748741

15. Tahwia, A. M.; Heniegal, A. M.; Abdellatief, M.; Tayeh, B. A.; and Elrahman, M. A., “Properties of Ultra-High Performance Geopolymer Concrete Incorporating Recycled Waste Glass,” Case Studies in Construction Materials, V. 17, 2022, p. e01393. doi: 10.1016/j.cscm.2022.e01393

16. Ranjbar, N.; Mehrali, M.; Maheri, M. R.; and Mehrali, M., “Hot-Pressed Geopolymer,” Cement and Concrete Research, V. 100, 2017, pp. 14-22. doi: 10.1016/j.cemconres.2017.05.010

17. Nishikawa, K.; Hashimoto, S.; Imai, H.; and Rossignol, S., “Cold Reaction Sintering for Preparation of Ultra-Dense Geopolymer Products,” Construction and Building Materials, V. 328, 2022, p. 127101. doi: 10.1016/j.conbuildmat.2022.127101

18. Yoo, D.-Y.; Banthia, N.; You, I.; and Lee, S.-J., “Recent Advances in Cementless Ultra-High-Performance Concrete Using Alkali-Activated Materials and Industrial Byproducts: A Review,” Cement and Concrete Composites, V. 148, 2024, p. 105470. doi: 10.1016/j.cemconcomp.2024.105470

19. Alsalman, A.; Assi, L. N.; Kareem, R. S.; Carter, K.; and Ziehl, P., “Energy and CO2 Emission Assessments of Alkali-Activated Concrete and Ordinary Portland Cement Concrete: A Comparative Analysis of Different Grades of Concrete,” Cleaner Environmental Systems, V. 3, 2021, p. 100047. doi: 10.1016/j.cesys.2021.100047

20. Nilimaa, J., “Smart Materials and Technologies for Sustainable Concrete Construction,” Developments in the Built Environment, V. 15, 2023, p. 100177. doi: 10.1016/j.dibe.2023.100177

21. Danish, A.; Öz, A.; Bayrak, B.; Kaplan, G.; Aydın, A. C.; and Ozbakkaloglu, T., “Performance Evaluation and Cost Analysis of Prepacked Geopolymers Containing Waste Marble Powder under Different Curing Temperatures for Sustainable Built Environment,” Resources, Conservation and Recycling, V. 192, 2023, p. 106910. doi: 10.1016/j.resconrec.2023.106910

22. Davidovits, J., Geopolymer Chemistry and Applications, fifth edition, Geopolymer Institute, Saint-Quentin, France, 2020.

23. Ambily, P. S.; Ravisankar, K.; Umarani, C.; Dattatreya, J. K.; and Iyer, N. R., “Development of Ultra-High-Performance Geopolymer Concrete,” Magazine of Concrete Research, V. 66, No. 2, 2014, pp. 82-89. doi: 10.1680/macr.13.00057

24. Shi, C.; Jiménez, A. F.; and Palomo, A., “New Cements for the 21st Century: The Pursuit of an Alternative to Portland Cement,” Cement and Concrete Research, V. 41, No. 7, 2011, pp. 750-763. doi: 10.1016/j.cemconres.2011.03.016

25. Xie, T.; Visintin, P.; Zhao, X.; and Gravina, R., “Mix Design and Mechanical Properties of Geopolymer and Alkali Activated Concrete: Review of the State-of-the-Art and the Development of a New Unified Approach,” Construction and Building Materials, V. 256, 2020, p. 119380. doi: 10.1016/j.conbuildmat.2020.119380

26. Chen, X.; Sutrisno, A.; and Struble, L. J., “Effects of Calcium on Setting Mechanism of Metakaolin-Based Geopolymer,” Journal of the American Ceramic Society, V. 101, No. 2, 2018, pp. 957-968. doi: 10.1111/jace.15249

27. Davidovits, J., “High-Alkali Cements for 21st Century Concretes,” Concrete Technology: Past, Present, and Future, SP-144, P. K. Mehta, ed., American Concrete Institute, Farmington Hills, MI, 1994, pp. 383-398.

28. Davidovits, J., “Why Alkali-Activated Materials (AAM) are Not Geopolymers,” Technical Paper #25, Geopolymer Institute, Saint-Quentin, France. doi: 10.13140/RG.2.2.34337.25441

29. Ranjbar, N.; Kashefi, A.; Ye, G.; and Mehrali, M., “Effects of Heat and Pressure on Hot-Pressed Geopolymer,” Construction and Building Materials, V. 231, 2020, p. 117106. doi: 10.1016/j.conbuildmat.2019.117106

30. Lao, J.-C.; Huang, B.-T.; Fang, Y.; Xu, L.-Y.; Dai, J.-G.; and Shah, S. P., “Strain-Hardening Alkali-Activated Fly Ash/Slag Composites with Ultra-High Compressive Strength and Ultra-High Tensile Ductility,” Cement and Concrete Research, V. 165, 2023, p. 107075. doi: 10.1016/j.cemconres.2022.107075

31. Liang, G.; Yao, W.; and Wei, Y., “A Green Ultra-High Performance Geopolymer Concrete Containing Recycled Fine Aggregate: Mechanical Properties, Freeze-Thaw Resistance and Microstructure,” The Science of the Total Environment, V. 895, 2023, p. 165090. doi: 10.1016/j.scitotenv.2023.165090

32. Cheng, D.; Reiner, D. M.; Yang, F.; Cui, C.; Meng, J.; Shan, Y.; Liu, Y.; Tao, S.; and Guan, D., “Projecting Future Carbon Emissions from Cement Production in Developing Countries,” Nature Communications, V. 14, No. 1, 2023, p. 8213. doi: 10.1038/s41467-023-43660-x

33. Mahasenan, N.; Smith, S.; and Humphreys, K., “The Cement Industry and Global Climate Change: Current and Potential Future Cement Industry CO2 Emissions,” Greenhouse Gas Control Technologies - 6th International Conference, J. Gale and Y. Kaya, eds., Pergamon, Oxford, UK, 2003, pp. 995-1000. doi: 10.1016/B978-008044276-1/50157-4

34. Wetzel, A., and Middendorf, B., “Influence of Silica Fume on Properties of Fresh and Hardened Ultra-High Performance Concrete Based on Alkali-Activated Slag,” Cement and Concrete Composites, V. 100, 2019, pp. 53-59. doi: 10.1016/j.cemconcomp.2019.03.023

35. Hosan, A.; Haque, S.; and Shaikh, F., “Compressive Behaviour of Sodium and Potassium Activators Synthetized Fly Ash Geopolymer at Elevated Temperatures: A Comparative Study,” Journal of Building Engineering, V. 8, 2016, pp. 123-130. doi: 10.1016/j.jobe.2016.10.005

36. Li, P. P.; Brouwers, H. J. H.; Chen, W.; and Yu, Q., “Optimization and Characterization of High-Volume Limestone Powder in Sustainable Ultra-High Performance Concrete,” Construction and Building Materials, V. 242, 2020, p. 118112. doi: 10.1016/j.conbuildmat.2020.118112

37. Bahmani, H., and Mostofinejad, D., “A Review of Engineering Properties of Ultra-High-Performance Geopolymer Concrete,” Developments in the Built Environment, V. 14, 2023, p. 100126. doi: 10.1016/j.dibe.2023.100126

38. Zhang, H.; Ji, T.; He, B.; and He, L., “Performance of Ultra-High Performance Concrete (UHPC) with Cement Partially Replaced by Ground Granite Powder (GGP) under Different Curing Conditions,” Construction and Building Materials, V. 213, 2019, pp. 469-482. doi: 10.1016/j.conbuildmat.2019.04.058

39. Soliman, N.; Omran, A.; Aghaee, K.; Ozbulut, O.; and Tagnit-Hamou, A., “Synergistic Effect of Nano-to-Macro Waste Glass of Various Particle Sizes on Ultra-High-Performance Concrete: Tradeoff between Mix Design Parameters and Performance through a Statistical Design Approach,” Journal of Building Engineering, V. 95, 2024, p. 110129. doi: 10.1016/j.jobe.2024.110129

40. Shohan, A. A. A.; Zaid, O.; Arbili, M. M.; Alsulamy, S. H.; and Ibrahim, W. M., “Development of Novel Ultra-High-Performance Lightweight Concrete Modified with Dehydrated Cement Powder and Aerogel,” Journal of Sustainable Cement-Based Materials, V. 13, No. 3, 2024, pp. 1-24. doi: 10.1080/21650373.2023.2278134

41. Zhang, L.; Shen, H.; Xu, K.; Huang, W.; Wang, Y.; Chen, M.; and Han, B., “Effect of Ceramic Waste Tile as a Fine Aggregate on the Mechanical Properties of Low-Carbon Ultrahigh Performance Concrete,” Construction and Building Materials, V. 370, 2023, p. 130595. doi: 10.1016/j.conbuildmat.2023.130595

42. Leng, Y.; Rui, Y.; Zhonghe, S.; Dingqiang, F.; Jinnan, W.; Yonghuan, Y.; Qiqing, L.; and Xiang, H., “Development of an Environmental Ultra-High Performance Concrete (UHPC) Incorporating Carbonated Recycled Coarse Aggregate,” Construction and Building Materials, V. 362, 2023, p. 129657. doi: 10.1016/j.conbuildmat.2022.129657

43. Liu, J.; Wu, C.; Liu, Z.; Li, J.; Xu, S.; Liu, K.; Su, Y.; and Chen, G., “Investigations on the Response of Ceramic Ball Aggregated and Steel Fibre Reinforced Geopolymer-Based Ultra-High Performance Concrete (G-UHPC) to Projectile Penetration,” Composite Structures, V. 255, 2021, p. 112983. doi: 10.1016/j.compstruct.2020.112983

44. Alsalami, Z. H. A.; Harith, I. K.; and Dhahir, M. K., “Utilization of Dates Palm Kernel in High Performance Concrete,” Journal of Building Engineering, V. 20, 2018, pp. 166-172. doi: 10.1016/j.jobe.2018.07.015

45. Tamanna, K.; Raman, S. N.; Jamil, M.; and Hamid, R., “Coal Bottom Ash as Supplementary Material for Sustainable Construction: A Comprehensive Review,” Construction and Building Materials, V. 389, 2023, p. 131679. doi: 10.1016/j.conbuildmat.2023.131679

46. Panda, S.; Nanda, A.; and Panigrahi, S. K., “Potential Utilization of Waste Plastic in Sustainable Geopolymer Concrete Production: A Review,” Journal of Environmental Management, V. 366, 2024, p. 121705. doi: 10.1016/j.jenvman.2024.121705

47. Ryu, G. S.; Lee, Y. B.; Koh, K. T.; and Chung, Y. S., “The Mechanical Properties of Fly Ash-Based Geopolymer Concrete with Alkaline Activators,” Construction and Building Materials, V. 47, 2013, pp. 409-418. doi: 10.1016/j.conbuildmat.2013.05.069

48. Payá, J.; Agrela, F.; Rosales, J.; Morales, M. M.; and Borrachero, M. V., “13 - Application of Alkali-Activated Industrial Waste,” New Trends in Eco-Efficient and Recycled Concrete, J. de Brito and F. Agrela, eds., Woodhead Publishing, Sawston, UK, 2019, pp. 357-424. doi: 10.1016/B978-0-08-102480-5.00013-0

49. Cai, R., and Ye, H., “Clinkerless Ultra-High Strength Concrete Based on Alkali-Activated Slag at High Temperatures,” Cement and Concrete Research, V. 145, 2021, p. 106465. doi: 10.1016/j.cemconres.2021.106465

50. Liu, Y.; Zhang, Z.; Shi, C.; Zhu, D.; Li, N.; and Deng, Y., “Development of Ultra-High Performance Geopolymer Concrete (UHPGC): Influence of Steel Fiber on Mechanical Properties,” Cement and Concrete Composites, V. 112, 2020, p. 103670. doi: 10.1016/j.cemconcomp.2020.103670

51. Liu, Y.; Shi, C.; Zhang, Z.; Li, N.; and Shi, D., “Mechanical and Fracture Properties of Ultra-High Performance Geopolymer Concrete: Effects of Steel Fiber and Silica Fume,” Cement and Concrete Composites, V. 112, 2020, p. 103665. doi: 10.1016/j.cemconcomp.2020.103665

52. Ghasemzadeh Mousavinejad, S. H., and Sammak, M., “An Assessment of the Fracture Parameters of Ultra-High-Performance Fiber-Reinforced Geopolymer Concrete (UHPFRGC): The Application of Work of Fracture and Size Effect Methods,” Theoretical and Applied Fracture Mechanics, V. 117, 2022, p. 103157. doi: 10.1016/j.tafmec.2021.103157

53. Paruthi, S.; Rahman, I.; Husain, A.; Khan, A. H.; Manea-Saghin, A.-M.; and Sabi, E., “A Comprehensive Review of Nano Materials in Geopolymer Concrete: Impact on Properties and Performance,” Developments in the Built Environment, V. 16, 2023, p. 100287. doi: 10.1016/j.dibe.2023.100287

54. Moujoud, Z.; Sair, S.; Ait Ousaleh, H.; Ayouch, I.; El Bouari, A.; and Tanane, O., “Geopolymer Composites Reinforced with Natural Fibers: A Review of Recent Advances in Processing and Properties,” Construction and Building Materials, V. 388, 2023, p. 131666. doi: 10.1016/j.conbuildmat.2023.131666

55. Bhutta, A.; Borges, P. H. R.; Zanotti, C.; Farooq, M.; and Banthia, N., “Flexural Behavior of Geopolymer Composites Reinforced with Steel and Polypropylene Macro Fibers,” Cement and Concrete Composites, V. 80, 2017, pp. 31-40. doi: 10.1016/j.cemconcomp.2016.11.014

56. Aisheh, Y. I. A.; Atrushi, D. S.; Akeed, M. H.; Qaidi, S.; and Tayeh, B. A., “Influence of Polypropylene and Steel Fibers on the Mechanical Properties of Ultra-High-Performance Fiber-Reinforced Geopolymer Concrete,” Case Studies in Construction Materials, V. 17, 2022, p. e01234. doi: 10.1016/j.cscm.2022.e01234

57. Rabiaa, E.; Mohamed, R. S.; Sofi, W. H.; and Tawfik, T. A., “Developing Geopolymer Concrete Properties by Using Nanomaterials and Steel Fibers,” Advances in Materials Science and Engineering, V. 2020, No. 1, 2020, p. 5186091. doi: 10.1155/2020/5186091

58. Çevik, A.; Alzeebaree, R.; Humur, G.; Niş, A.; and Gülşan, M. E., “Effect of Nano-Silica on the Chemical Durability and Mechanical Performance of Fly Ash Based Geopolymer Concrete,” Ceramics International, V. 44, No. 11, 2018, pp. 12253-12264. doi: 10.1016/j.ceramint.2018.04.009

59. Yoo, D.-Y.; Oh, T.; and Banthia, N., “Nanomaterials in Ultra-High-Performance Concrete (UHPC) – A Review,” Cement and Concrete Composites, V. 134, 2022, p. 104730. doi: 10.1016/j.cemconcomp.2022.104730

60. SAS Institute, Inc., “JMP 9 Design of Experiments Guide,” Cary, NC, 2010.

61. Polikar, R., “Ensemble Learning,” Ensemble Machine Learning: Methods and Applications, C. Zhang and Y. Ma, eds., Springer, New York, 2012, pp. 1-34. doi: 10.1007/978-1-4419-9326-7_1

62. Kumar, A.; Arora, H. C.; Kapoor, N. R.; Kumar, K.; Hadzima-Nyarko, M.; and Radu, D., “Machine Learning Intelligence to Assess the Shear Capacity of Corroded Reinforced Concrete Beams,” Scientific Reports, V. 13, No. 1, 2023, p. 2857. doi: 10.1038/s41598-023-30037-9

63. Song, H.; Ahmad, A.; Farooq, F.; Ostrowski, K. A.; Maślak, M.; Czarnecki, S.; and Aslam, F., “Predicting the Compressive Strength of Concrete with Fly Ash Admixture Using Machine Learning Algorithms,” Construction and Building Materials, V. 308, 2021, p. 125021. doi: 10.1016/j.conbuildmat.2021.125021

64. Mousavinejad, S. H. G., and Sammak, M., “Strength and Chloride Ion Penetration Resistance of Ultra-High-Performance Fiber Reinforced Geopolymer Concrete,” Structures, V. 32, 2021, pp. 1420-1427. doi: 10.1016/j.istruc.2021.03.112

65. Kathirvel, P., and Sreekumaran, S., “Sustainable Development of Ultra High Performance Concrete Using Geopolymer Technology,” Journal of Building Engineering, V. 39, 2021, p. 102267. doi: 10.1016/j.jobe.2021.102267

66. Rakesh, P.; Rao, S. V.; Kumar, P. R.; and De Brito, J., “A Study on the Strength and Microstructure Properties of High Strength Geopolymer Concrete (HSGPC),” Innovative Infrastructure Solutions, V. 10, No. 6, 2025, p. 240. doi: 10.1007/s41062-025-02012-y

67. Liu, J.; Wu, C.; Li, J.; Liu, Z.; Xu, S.; Liu, K.; Su, Y.; Fang, J.; and Chen, G., “Projectile Impact Resistance of Fibre-Reinforced Geopolymer-Based Ultra-High Performance Concrete (G-UHPC),” Construction and Building Materials, V. 290, 2021, p. 123189. doi: 10.1016/j.conbuildmat.2021.123189

68. Midhin, M. A. K.; Wong, L. S.; Ahmed, A. N.; Jasim, A. M. D. A.; and Paul, S. C., “Strength and Chemical Characterization of Ultra High-Performance Geopolymer Concrete: A Coherent Evaluation,” Civil Engineering Journal, V. 9, No. 12, 2023, pp. 3254-3277. doi: 10.28991/CEJ-2023-09-12-020

69. Althoey, F.; Zaid, O.; Alsulamy, S.; Martínez-García, R.; de Prado-Gil, J.; and Arbili, M. M., “Experimental Study on the Properties of Ultra-High-Strength Geopolymer Concrete with Polypropylene Fibers and Nano-Silica,” PLoS One, V. 18, No. 4, 2023, p. e0282435. doi: 10.1371/journal.pone.0282435

70. Breiman, L., “Random Forests,” Machine Learning, V. 45, No. 1, 2001, pp. 5-32. doi: 10.1023/A:1010933404324

71. Schapire, R. E., “A Brief Introduction to Boosting,” Proceedings of the 16th International Joint Conference on Artificial Intelligence - Volume 2, Morgan Kaufmann Publishers Inc., San Francisco, CA, 1999, pp. 1401-1406.

72. Chen, T., and Guestrin, C., “XGBoost: A Scalable Tree Boosting System,” Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Association for Computing Machinery, New York, 2016, pp. 785-794. doi: 10.1145/2939672.2939785

73. Džeroski, S., and Ženko, B., “Is Combining Classifiers with Stacking Better than Selecting the Best One?” Machine Learning, V. 54, No. 3, 2004, pp. 255-273. doi: 10.1023/B:MACH.0000015881.36452.6e

74. Abdellatief, M.; Hassan, Y. M.; Elnabwy, M. T.; Wong, L. S.; Chin, R. J.; and Mo, K. H., “Investigation of Machine Learning Models in Predicting Compressive Strength for Ultra-High-Performance Geopolymer Concrete: A Comparative Study,” Construction and Building Materials, V. 436, 2024, p. 136884. doi: 10.1016/j.conbuildmat.2024.136884

75. Aghaee, K., and Roshan, A., “Predicting Time to Cracking of Concrete Composites under Restrained Shrinkage: A Review with Insights from Statistical Analysis and Ensemble Machine Learning Approaches,” Journal of Building Engineering, V. 97, 2024, p. 110856. doi: 10.1016/j.jobe.2024.110856

76. Kazemi, F.; Shafighfard, T.; Jankowski, R.; and Yoo, D.-Y., “Active Learning on Stacked Machine Learning Techniques for Predicting Compressive Strength of Alkali-Activated Ultra-High-Performance Concrete,” Archives of Civil and Mechanical Engineering, V. 25, No. 1, 2024, p. 24. doi: 10.1007/s43452-024-01067-5


ALSO AVAILABLE IN:

Electronic Materials Journal



  

Edit Module Settings to define Page Content Reviewer