Title:
Enhancing Fracture Properties in Cementitious Composites through Hybrid Fiber Reinforcement
Author(s):
Qi Cao, Liujingyuan Su, Changjun Zhou, Kaiming Pan, Jun Wu, and Xiaoyan Han
Publication:
Materials Journal
Volume:
122
Issue:
5
Appears on pages(s):
27-42
Keywords:
fracture properties; multiscale fiber reinforcement; nanocellulose; sisal fiber; steel fiber
DOI:
10.14359/51747870
Date:
9/1/2025
Abstract:
Adding fibers, especially steel fibers, to cementitious composites is one of the most commonly used methods to improve the mechanical properties of cementitious composites. The high price is the most concerning factor in the use of steel fibers. This study aims to investigate the influence of the content of multiscale fibers, including nanocellulose, sisal fibers, and steel fibers, on the fracture properties of cementitious composites. The fracture properties will be evaluated using the initial fracture toughness, unstable fracture toughness, and fracture energy through notched-beam bending tests. The results demonstrate that replacing steel fiber with an appropriate amount of sisal fiber effectively improves fracture properties, indicating a balancing point between fracture-
impeding properties and price/environment. Specifically, under total macrofiber volume fractions of 1 and 1.5%, the 0.2% sisal fiber replacement for the steel fibers exhibits the best fracture-
impeding properties. Additionally, the incorporation of nanocellulose (2% optimal in the research) enables the formation of a multiscale crack resistance system at the nano-micro level, further enhancing the fracture-impeding properties of cementitious composites. Moreover, the research found that adding the fibers collaboratively can cultivate a better enhancement in fracture-impeding properties than adding them separately.
Related References:
1. Pereira, E. B.; Fischer, G.; and Barros, J. A. O., “Effect of Hybrid Fiber Reinforcement on the Cracking Process in Fiber Reinforced Cementitious Composites,” Cement and Concrete Composites, V. 34, No. 10, Nov. 2012, pp. 1114-1123. doi: 10.1016/j.cemconcomp.2012.08.004
2. Song, H.; Liu, J.; He, K.; and Ahmad, W., “A Comprehensive Overview of Jute Fiber Reinforced Cementitious Composites,” Case Studies in Construction Materials, V. 15, Dec. 2021, Article No. e00724. doi: 10.1016/j.cscm.2021.e00724
3. Brandt, A. M., “Fibre Reinforced Cement-Based (FRC) Composites After over 40 Years of Development in Building and Civil Engineering,” Composite Structures, V. 86, No. 1-3, Nov. 2008, pp. 3-9. doi: 10.1016/j.compstruct.2008.03.006
4. Liu, H.; Zhang, Q.; Li, V.; Su, H.; and Gu, C., “Durability Study on Engineered Cementitious Composites (ECC) Under Sulfate and Chloride Environment,” Construction and Building Materials, V. 133, Feb. 2017, pp. 171-181. doi: 10.1016/j.conbuildmat.2016.12.074
5. Yang, Y.; Zhou, Q.; Li, X.; Lum, G. C.; and Deng, Y., “Uniaxial Compression Mechanical Property and Fracture Behavior of Hybrid Inorganic Short Mineral Fibers Reinforced Cement-Based Material,” Cement and Concrete Composites, V. 104, Nov. 2019, Article No. 103338. doi: 10.1016/j.cemconcomp.2019.103338
6. Alrekabi, S.; Cundy, A. B.; Lampropoulos, A.; Whitby, R. L. D.; and Savina, I., “Mechanical Performance of Novel Cement-Based Composites Prepared with Nano-Fibres, and Hybrid Nano- and Micro-Fibres,” Composite Structures, V. 178, Oct. 2017, pp. 145-156. doi: 10.1016/j.compstruct.2017.06.045
7. Smarzewski, P., “Influence of Basalt-Polypropylene Fibres on Fracture Properties of High Performance Concrete,” Composite Structures, V. 209, Feb. 2019, pp. 23-33. doi: 10.1016/j.compstruct.2018.10.070
8. Guo, A.; Sun, Z.; Sathitsuksanoh, N.; and Feng, H., “A Review on the Application of Nanocellulose in Cementitious Materials,” Nanomaterials, V. 10, No. 12, Dec. 2020, Article No. 2476. doi: 10.3390/nano10122476
9. Kamasamudram, K. S.; Ashraf, W.; and Landis, E. N., “Cellulose Nanofibrils with and without Nanosilica for the Performance Enhancement of Portland Cement Systems,” Construction and Building Materials, V. 285, May 2021, Article No. 121547. doi: 10.1016/j.conbuildmat.2020.121547
10. Barnat-Hunek, D.; Grzegorczyk-Frańczak, M.; Szymańska-Chargot, M.; and Łagód, G., “Effect of Eco-Friendly Cellulose Nanocrystals on Physical Properties of Cement Mortars,” Polymers, V. 11, No. 12, Dec. 2019, Article No. 2088. doi: 10.3390/polym11122088
11. Goncalves, J.; El-Bakkari, M.; Boluk, Y.; and Bindiganavile, V., “Cellulose Nanofibres (CNF) for Sulphate Resistance in Cement Based Systems,” Cement and Concrete Composites, V. 99, May 2019, pp. 100-111. doi: 10.1016/j.cemconcomp.2019.03.005
12. Onuaguluchi, O., and Banthia, N., “Plant-Based Natural Fibre Reinforced Cement Composites: A Review,” Cement and Concrete Composites, V. 68, Apr. 2016, pp. 96-108. doi: 10.1016/j.cemconcomp.2016.02.014
13. Djafari Petroudy, S. R., “Physical and Mechanical Properties of Natural Fibers,” Advanced High Strength Natural Fibre Composites in Construction, M. Fan and F. Fu, eds., Woodhead Publishing, Sawston, UK, 2017, pp. 59-83.
14. Kurpińska, M.; Pawelska-Mazur, M.; Gu, Y.; and Kurpiński, F., “The Impact of Natural Fibers’ Characteristics on Mechanical Properties of the Cement Composites,” Scientific Reports, V. 12, No. 1, 2022, Article No. 20565. doi: 10.1038/s41598-022-25085-6
15. Rana, S.; Pichandi, S.; Parveen, S.; and Fangueiro, R., “Natural Plant Fibers: Production, Processing, Properties and Their Sustainability Parameters,” Roadmap to Sustainable Textiles and Clothing: Eco-friendly Raw Materials, Technologies, and Processing Methods, S. S. Muthu, ed., Springer, Singapore, 2014, pp. 1-35.
16. La Rosa, A. D., and Grammatikos, S. A., “Comparative Life Cycle Assessment of Cotton and Other Natural Fibers for Textile Applications,” Fibers, V. 7, No. 12, Dec. 2019, Article No. 101. doi: 10.3390/fib7120101
17. Munasinghe, P.; Druckman, A.; and Dissanayake, D. G. K., “A Systematic Review of the Life Cycle Inventory of Clothing,” Journal of Cleaner Production, V. 320, Oct. 2021, Article No. 128852. doi: 10.1016/j.jclepro.2021.128852
18. Bachchan, A. A.; Das, P. P.; and Chaudhary, V., “Effect of Moisture Absorption on the Properties of Natural Fiber Reinforced Polymer Composites: A Review,” Materials Today: Proceedings, V. 49, Part 8, 2022, pp. 3403-3408. doi: 10.1016/j.matpr.2021.02.812
19. Elfaleh, I.; Abbassi, F.; Habibi, M.; Ahmad, F.; Guedri, M.; Nasri, M.; and Garnier, C., “A Comprehensive Review of Natural Fibers and Their Composites: An Eco-Friendly Alternative to Conventional Materials,” Results in Engineering, V. 19, Sept. 2023, Article No. 101271. doi: 10.1016/j.rineng.2023.101271
20. John, M. J., and Anandjiwala, R. D., “Recent Developments in Chemical Modification and Characterization of Natural Fiber-Reinforced Composites,” Polymer Composites, V. 29, No. 2, Feb. 2008, pp. 187-207. doi: 10.1002/pc.20461
21. Gonzalez, V.; Lou, X.; and Chi, T., “Evaluating Environmental Impact of Natural and Synthetic Fibers: A Life Cycle Assessment Approach,” Sustainability, V. 15, No. 9, May 2023, Article No. 7670. doi: 10.3390/su15097670
22. Mahmud, S.; Hasan, K. M. F.; Jahid, M.; Mohiuddin, K.; Zhang, R.; and Zhu, J., “Comprehensive Review on Plant Fiber-Reinforced Polymeric Biocomposites,” Journal of Materials Science, V. 56, No. 12, Apr. 2021, pp. 7231-7264. doi: 10.1007/s10853-021-05774-9
23. Ruano, G.; Bellomo, F.; López, G.; Bertuzzi, A.; Nallim, L.; and Oller, S., “Mechanical Behaviour of Cementitious Composites Reinforced with Bagasse and Hemp Fibers,” Construction and Building Materials, V. 240, Apr. 2020, Article No. 117856. doi: 10.1016/j.conbuildmat.2019.117856
24. Kriker, A.; Debicki, G.; Bali, A.; Khenfer, M. M.; and Chabannet, M., “Mechanical Properties of Date Palm Fibres and Concrete Reinforced with Date Palm Fibres in Hot-Dry Climate,” Cement and Concrete Composites, V. 27, No. 5, May 2005, pp. 554-564. doi: 10.1016/j.cemconcomp.2004.09.015
25. Kundu, S. P.; Chakraborty, S.; Roy, A.; Adhikari, B.; and Majumder, S. B., “Chemically Modified Jute Fibre Reinforced Non-pressure (NP) Concrete Pipes with Improved Mechanical Properties,” Construction and Building Materials, V. 37, Dec. 2012, pp. 841-850. doi: 10.1016/j.conbuildmat.2012.07.082
26. Senthilkumar, K.; Saba, N.; Rajini, N.; Chandrasekar, M.; Jawaid, M.; Siengchin, S.; and Alotman, O. Y., “Mechanical Properties Evaluation of Sisal Fibre Reinforced Polymer Composites: A Review,” Construction and Building Materials, V. 174, June 2018, pp. 713-729. doi: 10.1016/j.conbuildmat.2018.04.143
27. de Souza Castoldi, R.; de Souza, L. M. S.; Souto, F.; Liebscher, M.; Mechtcherine, V.; and de Andrade Silva, F., “Effect of Alkali Treatment on Physical–Chemical Properties of Sisal Fibers and Adhesion Towards Cement-Based Matrices,” Construction and Building Materials, V. 345, Aug. 2022, Article No. 128363. doi: 10.1016/j.conbuildmat.2022.128363
28. Bao, H.; Meng, H.; You, W.; and Qin, F., “Study on the Corrosion Resistance of Sisal Fiber Concrete in Marine Environment,” SN Applied Sciences, V. 1, No. 12, Dec. 2019, Article No. 1558. doi: 10.1007/s42452-019-1551-8
29. Ramakrishna, G., and Sundararajan, T., “Impact Strength of a Few Natural Fibre Reinforced Cement Mortar Slabs: A Comparative Study,” Cement and Concrete Composites, V. 27, No. 5, May 2005, pp. 547-553. doi: 10.1016/j.cemconcomp.2004.09.006
30. Zhou, X.; Ghaffar, S. H.; Dong, W.; Oladiran, O.; and Fan, M., “Fracture and Impact Properties of Short Discrete Jute Fibre-Reinforced Cementitious Composites,” Materials and Design, V. 49, Aug. 2013, pp. 35-47. doi: 10.1016/j.matdes.2013.01.029
31. ASTM C78/C78M-22, “Standard Test Method for Flexural Strength of Concrete (Using Simple Beam with Third-Point Loading),” ASTM International, West Conshohocken, PA, 2022, 5 pp.
32. ASTM E399-24, “Standard Test Method for Linear-Elastic Plane-Strain Fracture Toughness of Metallic Materials,” ASTM International, West Conshohocken, PA, 2024, 40 pp.
33. Xu, S., and Reinhardt, H. W., “Determination of Double-Determination of Double-K Criterion for Crack Propagation in Quasi-Brittle Fracture Part I: Experimental Investigation of Crack Propagation,” International Journal of Fracture, V. 98, No. 2, June 1999, pp. 111-149. doi: 10.1023/A:1018668929989
34. Tada, H.; Paris, P. C.; and Irwin, G. R., The Stress Analysis of Cracks Handbook, third edition, ASME Press, New York, 2000, 698 pp.
35. Xu, S.; Li, Q.; Wu, Y.; Dong, L.; Lyu, Y.; Reinhardt, H. W.; Leung, C. K. Y.; Ruiz, G.; Kumar, S.; and Hu, S., “RILEM Standard: Testing Methods for Determination of the Double-K Criterion for Crack Propagation in Concrete Using Wedge-Splitting Tests and Three-Point Bending Beam Tests, Recommendation of RILEM TC265-TDK,” Materials and Structures, V. 54, No. 6, Dec. 2021, Article No. 220. doi: 10.1617/s11527-021-01786-8
36. RILEM Technical Committee 50-FMC, “Determination of the Fracture Energy of Mortar and Concrete by Means of Three-Point Bend Tests on Notched Beams,” Materials and Structures, V. 18, No. 4, July 1985, pp. 287-290. doi: 10.1007/BF02472918
37. Bhosale, A.; Rasheed, M. A.; Prakash, S. S.; and Raju, G., “A Study on the Efficiency of Steel vs. Synthetic vs. Hybrid Fibers on Fracture Behavior of Concrete in Flexure Using Acoustic Emission,” Construction and Building Materials, V. 199, Feb. 2019, pp. 256-268. doi: 10.1016/j.conbuildmat.2018.12.011
38. Chen, Z.; Wang, X.; Ding, L.; Jiang, K.; Huang, H.; Liu, J.; and Wu, Z., “Synergistic Effects of Hybrid Macro Basalt Fibers and Micro Fibers on the Mechanical Properties of UHPC,” Archives of Civil and Mechanical Engineering, V. 23, No. 4, Nov. 2023, Article No. 264. doi: 10.1007/s43452-023-00807-3
39. Zainal, S. M. I. S.; Hejazi, F.; and Mafaileh, A. M. A., “Strengthening of Reinforced Concrete Slabs Using Macro and Micro Synthetic Fibers,” Structures, V. 51, May 2023, pp. 1579-1590. doi: 10.1016/j.istruc.2023.03.120