Geopolymer Composites: Potential as Repair and Strengthening Materials for Concrete Structures

International Concrete Abstracts Portal

The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

  


Title: Geopolymer Composites: Potential as Repair and Strengthening Materials for Concrete Structures

Author(s): Giwan Noh, Uksun Kim, Myoungsu Shin, Woo-Young Lim, and Thomas H.-K. Kang

Publication: Structural Journal

Volume: 122

Issue: 5

Appears on pages(s): 165-179

Keywords: bond strength; geopolymer; geopolymer concrete; rehabilitation; repair; strengthening

DOI: 10.14359/51746719

Date: 9/1/2025

Abstract:
Geopolymer, an inorganic polymer material, has recently gained attention as an eco-friendly alternative to portland cement. Numerous studies have explored the potential of geopolymer as a primary structural material. This study aimed to examine the efficacy of geopolymer composites as repairing and strengthening materials rather than as structural materials. Data from 782 bond strength tests and 164 structural tests were collected and analyzed, including those on beams, beam-column connections, and walls. The analysis focused on critical factors affecting the bond strength of geopolymer composites with conventional cementitious concrete, and the structural behaviors of reinforced concrete members repaired or strengthened with these composites. The findings highlight the potential of geopolymer composites for enhancing the resilience and toughness of existing damaged or undamaged concrete structures. Additionally, they offer valuable insights into the key considerations for using geopolymer composites as repair or strengthening materials, providing a useful reference for future research in this field.

Related References:

1. Alanazi, H.; Yang, M.; Zhang, D.; and Gao, Z., “Bond Strength of PCC Pavement Repairs Using Metakaolin-Based Geoploymer Mortar,” Cement and Concrete Composites, V. 65, 2016, pp. 75-82. doi: 10.1016/j.cemconcomp.2015.10.009

2. Diaz-Loya, E. I.; Allouche, E. N.; and Vaidya, S., “Mechanical Properties of Fly-Ash-Based Geoploymer Concrete,” ACI Materials Journal, V. 108, No. 3, May-June 2011, pp. 300-306. doi: 10.14359/51682495

3. Davidovits, J., “High-Alkali Cements for 21st Century Concretes,” Concrete Technology: Past, Present, and Future, SP-144, P. K. Mehta, ed., American Concrete Institute, Farmington Hills, MI, 1994, pp. 383-398. doi: 10.14359/452310.14359/4523

4. Li, N.; Shi, C.; Zhang, Z.; Wang, H.; and Liu, Y., “A Review on Mixture Design Methods for Geopolymer Concrete,” Composites. Part B, Engineering, V. 178, 2019, p. 107490. doi: 10.1016/j.compositesb.2019.107490

5. Ma, C.-K.; Awang, A. Z.; and Omar, W., “Structural and Material Performance of Geopolymer Concrete: A Review,” Construction and Building Materials, V. 186, 2018, pp. 90-102. doi: 10.1016/j.conbuildmat.2018.07.111

6. Sofi, M.; van Deventer, J. S. J.; Mendis, P. A.; and Lukey, G. C., “Engineering Properties of Inorganic Polymer Concretes (IPCs),” Cement and Concrete Research, V. 37, No. 2, 2007, pp. 251-257. doi: 10.1016/j.cemconres.2006.10.008

7. Hardjito, D., and Rangan, V., “Development and Properties of Low-Calcium Fly Ash-Based Geopolymer Concrete,” Research Report GC 1, Curtin University of Technology, Perth, Australia, 2005.

8. Panias, D.; Giannopoulou, I. P.; and Perraki, T., “Effect of Synthesis Parameters on the Mechanical Properties of Fly Ash-Based Geopolymers,” Colloids and Surfaces. A, Physicochemical and Engineering Aspects, V. 301, No. 1-3, 2007, pp. 246-254. doi: 10.1016/j.colsurfa.2006.12.064

9. Lee, N. K., and Lee, H. K., “Setting and Mechanical Properties of Alkali-Activated Fly Ash/Slag Concrete Manufactured at Room Temperature,” Construction and Building Materials, V. 47, 2013, pp. 1201-1209. doi: 10.1016/j.conbuildmat.2013.05.107

10. Sarker, P. K.; Haque, R.; and Ramgolam, K. V., “Fracture Behaviour of Heat Cured Fly Ash Based Geopolymer Concrete,” Materials & Design, V. 44, 2013, pp. 580-586. doi: 10.1016/j.matdes.2012.08.005

11. Thomas, R. J., and Peethamparan, S., “Alkali-Activated Concrete: Engineering Properties and Stress-Strain Behavior,” Construction and Building Materials, V. 93, 2015, pp. 49-56. doi: 10.1016/j.conbuildmat.2015.04.039

12. Noushini, A.; Aslani, F.; Castel, A.; Gilbert, R. I.; Uy, B.; and Foster, S., “Compressive Stress-Strain Model for Low-Calcium Fly Ash-Based Geopolymer and Heat-Cured Portland Cement Concrete,” Cement and Concrete Composites, V. 73, 2016, pp. 136-146. doi: 10.1016/j.cemconcomp.2016.07.004

13. Nath, P., and Sarker, P. K., “Flexural Strength and Elastic Modulus of Ambient-Cured Blended Low-Calcium Fly Ash Geopolymer Concrete,” Construction and Building Materials, V. 130, 2017, pp. 22-31. doi: 10.1016/j.conbuildmat.2016.11.034

14. Nikoloutsopoulos, N.; Sotiropoulou, A.; Kakali, G.; and Tsivilis, S., “Physical and Mechanical Properties of Fly Ash Based Geopolymer Concrete Compared to Conventional Concrete,” Buildings, V. 11, No. 5, 2021, p. 178 doi: 10.3390/buildings11050178

15. Farhan, N. A.; Sheikh, M. N.; and Hadi, M. N. S., “Investigation of Engineering Properties of Normal and High Strength Fly Ash Based Geopolymer and Alkali-Activated Slag Concrete Compared to Ordinary Portland Cement Concrete,” Construction and Building Materials, V. 196, 2019, pp. 26-42. doi: 10.1016/j.conbuildmat.2018.11.083

16. Soutsos, M.; Boyle, A. P.; Vinai, R.; Hadjierakleous, A.; and Barnett, S. J., “Factors Influencing the Compressive Strength of Fly Ash Based Geopolymers,” Construction and Building Materials, V. 110, 2016, pp. 355-368. doi: 10.1016/j.conbuildmat.2015.11.045

17. Sarker, P. K.; Kelly, S.; and Yao, Z., “Effect of Fire Exposure on Cracking, Spalling and Residual Strength of Fly Ash Geopolymer Concrete,” Materials & Design, V. 63, 2014, pp. 584-592. doi: 10.1016/j.matdes.2014.06.059

18. Farooq, F.; Xin, J.; Javed, M. F.; Akbar, A.; Shah, M. I.; Aslam, F.; and Alyousef, R., “Geopolymer Concrete as Sustainable Material: A State of the Art Review,” Construction and Building Materials, V. 306, 2021, p. 124762. doi: 10.1016/j.conbuildmat.2021.124762

19. Fernández-Jiménez, A. M.; Palomo, A.; and López-Hombrados, C., “Engineering Properties of Alkali-Activated Fly Ash Concrete,” ACI Materials Journal, V. 103, No. 2, Mar.-Apr. 2006, pp. 106-112. doi: 10.14359/15261

20. Paswan, R.; Rahman, M. R.; Singh, S. K.; and Singh, B., “Bond Behavior of Reinforcing Steel Bar and Geopolymer Concrete,” Journal of Materials in Civil Engineering, ASCE, V. 32, No. 7, 2020, p. 04020167. doi: 10.1061/(ASCE)MT.1943-5533.0003237

21. Sarker, P. K., “Bond Strength of Reinforcing Steel Embedded in Fly Ash-Based Geopolymer Concrete,” Materials and Structures, V. 44, No. 5, 2011, pp. 1021-1030. doi: 10.1617/s11527-010-9683-8

22. Mamdouh, H.; Ali, A. M.; Osman, M. A.; Deifalla, A. F.; and Ayash, N. M., “Effects of Size and Flexural Reinforcement Ratio on Ambient-Cured Geopolymer Slag Concrete Beams under Four Point Bending,” Buildings, V. 12, No. 10, 2022, p. 1554. doi: 10.3390/buildings12101554

23. Maranan, G. B.; Manalo, A. C.; Benmokrane, B.; Karunasena, W.; Mendis, P.; and Nguyen, T. Q., “Shear Behaviour of Geopolymer-Concrete Beams Transversely Reinforced with Continuous Rectangular GFRP Composite Spirals,” Composite Structures, V. 187, 2018, pp. 454-465. doi: 10.1016/j.compstruct.2017.12.080

24. Maranan, G. B.; Manalo, A. C.; Benmokrane, B.; Karunasena, W.; Mendis, P.; and Nguyen, T. Q., “Flexural Behavior of Geopolymer-Concrete Beams Longitudinally Reinforced with GFRP and Steel Hybrid Reinforcements,” Engineering Structures, V. 182, 2019, pp. 141-152. doi: 10.1016/j.engstruct.2018.12.073

25. Wu, C.; Hwang, H.-J.; Shi, C.; Li, N.; and Du, Y., “Shear Tests on Reinforced Slag-Based Geopolymer Concrete Beams with Transverse Reinforcement,” Engineering Structures, V. 219, 2020, p. 110966. doi: 10.1016/j.engstruct.2020.110966

26. ACI Committee 318, “Building Code Requirements for Structural Concrete (ACI 318-19) and Commentary (318R-19) (Reapproved 2022),” American Concrete Institute, Farmington Hills, MI, 2019, 624 pp.

27. EN 1992-1-1, “Eurocode 2: Design of Concrete Structures - Part 1-1: General Rules and Rules for Buildings,” European Committee for Standardization, Brussels, Belgium, 2004.

28. Chindaprasirt, P.; Sriopas, B.; Phosri, P.; Yoddumrong, P.; Anantakarn, K.; and Kroehong, W., “Hybrid High Calcium Fly Ash Alkali-Activated Repair Material for Concrete Exposed to Sulfate Environment,” Journal of Building Engineering, V. 45, 2022, p. 103590 doi: 10.1016/j.jobe.2021.103590

29. Wang, Y.-S.; Peng, K.-D.; Alrefaei, Y.; and Dai, J.-G., “The Bond between Geopolymer Repair Mortars and OPC Concrete Substrate: Strength and Microscopic Interactions,” Cement and Concrete Composites, V. 119, 2021, p. 103991. doi: 10.1016/j.cemconcomp.2021.103991

30. Albidah, A.; Abadel, A.; Alrshoudi, F.; Altheeb, A.; Abbas, H.; and Al-Salloum, Y., “Bond Strength between Concrete Substrate and Metakaolin Geopolymer Repair Mortars at Ambient and Elevated Temperatures,” Journal of Materials Research and Technology, V. 9, No. 5, 2020, pp. 10732-10745. doi: 10.1016/j.jmrt.2020.07.092

31. Gomaa, E.; Gheni, A.; and ElGawady, M. A., “Repair of Ordinary Portland Cement Concrete Using Ambient-Cured Alkali Activated Concrete: Interfacial Behavior,” Cement and Concrete Research, V. 129, 2020, p. 105968 doi: 10.1016/j.cemconres.2019.105968

32. López-Carreño, R.-D.; Pujadas, P.; Cavalaro, S. H. P.; and Aguado, A., “Bond Strength of Whitetoppings and Bonded Overlays Constructed with Self-Compacting High-Performance Concrete,” Construction and Building Materials, V. 153, 2017, pp. 835-845. doi: 10.1016/j.conbuildmat.2017.07.136

33. Zailani, W. W. A.; Abdullah, M. M. A. B.; Zainol, M. R. R. M. A.; Razak, R. A.; and Tahir, M. F. M., “Compressive and Bonding Strength of Fly Ash Based Geopolymer Mortar,” AIP Conference Proceedings, V. 1887, No. 1, 2017, p. 020058. doi: 10.1063/1.5003541

34. Abdullah, M. M. A. B.; Aziz, I. H. A.; Zailani, W. W. A.; Rahim, S. Z. A.; Yong, H. C.; Sandu, A. V.; and Peng, L. S., “Silica Bonding Reaction on Fly Ash Based Geopolymer Repair Material System with incorporation of Various Concrete Substrates,” Archives of Metallurgy and Materials, V. 67, No. 4, 2022, pp. 1277-1281. doi: 10.24425/amm.2022.141052

35. Gomaa, E.; Gheni, A. A.; Kashosi, C.; and ElGawady, M. A., “Bond Strength of Eco-Friendly Class C Fly Ash-Based Thermally Cured Alkali-Activated Concrete to Portland Cement Concrete,” Journal of Cleaner Production, V. 235, 2019, pp. 404-416. doi: 10.1016/j.jclepro.2019.06.268

36. Huseien, G. F., and Shah, K. W., “Performance Evaluation of Alkali-Activated Mortars Containing Industrial Wastes as Surface Repair Materials,” Journal of Building Engineering, V. 30, 2020, p. 101234. doi: 10.1016/j.jobe.2020.101234

37. Huseien, G. F.; Mirza, J.; Ismail, M.; Ghoshal, S. K.; and Ariffin, M. A. M., “Effect of Metakaolin Replaced Granulated Blast Furnace Slag on Fresh and Early Strength Properties of Geopolymer Mortar,” Ain Shams Engineering Journal, V. 9, No. 4, 2018, pp. 1557-1566. doi: 10.1016/j.asej.2016.11.011

38. Huseien, G. F.; Hussein, Z. J.; Kubba, Z.; Nikolaevich, B. M.; and Mirza, J., “Improved Bond Strength Performance of Geopolymer Mortars: Role of High Volume Ground Blast Furnace Slag, Fly Ash, and Palm Oil Fuel Ash Incorporation,” Minerals, V. 13, No. 8, 2023, p. 1096. doi: 10.3390/min13081096

39. Laskar, S. M., and Talukdar, S., “Preparation and Tests for Workability, Compressive and Bond Strength of Ultra-Fine Slag Based Geopolymer as Concrete Repairing Agent,” Construction and Building Materials, V. 154, 2017, pp. 176-190. doi: 10.1016/j.conbuildmat.2017.07.187

40. Laskar, S. M.; Mozumder, R. A.; and Laskar, A. I., “Behaviour of RC Beam Repaired Using Alkali Activated Slag-Based Agent under Static and Cyclic Loading,” Structures, V. 31, 2021, pp. 761-768. doi: 10.1016/j.istruc.2021.02.039

41. Pacheco-Torgal, F.; Castro-Gomes, J. P.; and Jalali, S., “Adhesion Characterization of Tungsten Mine Waste Geopolymeric Binder. Influence of OPC Concrete Substrate Surface Treatment,” Construction and Building Materials, V. 22, No. 3, 2008, pp. 154-161. doi: 10.1016/j.conbuildmat.2006.10.005

42. Phoo-ngernkham, T.; Chindaprasirt, P.; Sata, V.; Hanjitsuwan, S.; and Hatanaka, S., “The Effect of Adding Nano-SiO2 and Nano-Al2O3 on Properties of High Calcium Fly Ash Geopolymer Cured at Ambient Temperature,” Materials & Design, V. 55, 2014, pp. 58-65. doi: 10.1016/j.matdes.2013.09.049

43. Phoo-ngernkham, T.; Sata, V.; Hanjitsuwan, S.; Ridtirud, C.; Hatanaka, S.; and Chindaprasirt, P., “High Calcium Fly Ash Geopolymer Mortar Containing Portland Cement for Use as Repair Material,” Construction and Building Materials, V. 98, 2015, pp. 482-488. doi: 10.1016/j.conbuildmat.2015.08.139

44. Phoo-ngernkham, T.; Maegawa, A.; Mishima, N.; Hatanaka, S.; and Chindaprasirt, P., “Effects of Sodium Hydroxide and Sodium Silicate Solutions on Compressive and Shear Bond Strengths of FA-GBFS Geopolymer,” Construction and Building Materials, V. 91, 2015, pp. 1-8. doi: 10.1016/j.conbuildmat.2015.05.001

45. Shah, K. W., and Huseien, G. F., “Bond Strength Performance of Ceramic, Fly Ash and GBFS Ternary Wastes Combined Alkali-Activated Mortars Exposed to Aggressive Environments,” Construction and Building Materials, V. 251, 2020, p. 119088. doi: 10.1016/j.conbuildmat.2020.119088

46. Sharkawi, A.; Taman, M.; Afefy, H. M.; and Hegazy, Y., “Efficiency of Geopolymer vs. High-Strength Grout as Repairing Material for Reinforced Cementitious Elements,” Structures, V. 27, 2020, pp. 330-342. doi: 10.1016/j.istruc.2020.06.001

47. Sinha, A. K., and Talukdar, S., “Mechanical and Bond Behaviour of High Volume Ultrafine-Slag Blended Fly Ash Based Alkali Activated Concrete,” Construction and Building Materials, V. 383, 2023, p. 131368. doi: 10.1016/j.conbuildmat.2023.131368

48. Tan, J.; Dan, H.; and Ma, Z., “Metakaolin Based Geopolymer Mortar as Concrete Repairs: Bond Strength and Degradation when Subjected to Aggressive Environments,” Ceramics International, V. 48, No. 16, 2022, pp. 23559-23570. doi: 10.1016/j.ceramint.2022.05.004

49. Zailani, W. W. A.; Bouaissi, A.; Abdullah, M. M. A. B.; Razak, R. A.; Yoriya, S.; Salleh, M. A. A. M.; Zainol, M. R. R. M. A.; and Fansuri, H., “Bonding Strength Characteristics of FA-Based Geopolymer Paste as a Repair Material When Applied on OPC Substrate,” Applied Sciences, V. 10, No. 9, 2020, p. 3321. doi: 10.3390/app10093321

50. Zanotti, C.; Borges, P. H. R.; Bhutta, A.; and Banthia, N., “Bond Strength between Concrete Substrate and Metakaolin Geopolymer Repair Mortar: Effect of Curing Regime and PVA Fiber Reinforcement,” Cement and Concrete Composites, V. 80, 2017, pp. 307-316. doi: 10.1016/j.cemconcomp.2016.12.014

51. Zheng, C.; Mao, Z.; Chen, L.; Qian, H.; and Wang, J., “Development of a Novel Rapid Repairing Agent for Concrete Based on GFRP Waste Powder/GGBS Geopolymer Mortars,” Journal of Building Engineering, V. 71, 2023, p. 106542. doi: 10.1016/j.jobe.2023.106542

52. Ma, Z.; Dan, H.; Tan, J.; Li, M.; and Li, S., “Optimization Design of MK-GGBS Based Geopolymer Repairing Mortar Based on Response Surface Methodology,” Materials, V. 16, No. 5, 2023, p. 1889. doi: 10.3390/ma16051889

53. Fan, J., and Zhang, B., “Repair of Ordinary Portland Cement Concrete Using Alkali Activated Slag/Fly Ash: Freeze-Thaw Resistance and Pore Size Evolution of Adhesive Interface,” Construction and Building Materials, V. 300, 2021, p. 124334. doi: 10.1016/j.conbuildmat.2021.124334

54. Fan, L. F.; Chen, D. K.; and Zhong, W. L., “Effects of Slag and Alkaline Solution Contents on Bonding Strength of Geopolymer-Concrete Composites,” Construction and Building Materials, V. 406, 2023, p. 133391. doi: 10.1016/j.conbuildmat.2023.133391

55. Asayesh, S.; Javid, A. A. S.; Ziari, H.; and Mehri, B., “Evaluating Fresh State, Hardened State, Thermal Expansion and Bond Properties of Geopolymers for the Repairing of Concrete Pavements under Restrained Conditions,” Construction and Building Materials, V. 292, 2021, p. 123398. doi: 10.1016/j.conbuildmat.2021.123398

56. Kumar, S.; Sekhar Das, C.; Lao, J.; Alrefaei, Y.; and Dai, J.-G., “Effect of Sand Content on Bond Performance of Engineered Geopolymer Composites (EGC) Repair Material,” Construction and Building Materials, V. 328, 2022, p. 127080. doi: 10.1016/j.conbuildmat.2022.127080

57. Nunes, V. A.; Borges, P. H. R.; and Zanotti, C., “Mechanical Compatibility and Adhesion between Alkali-Activated Repair Mortars and Portland Cement Concrete Substrate,” Construction and Building Materials, V. 215, 2019, pp. 569-581. doi: 10.1016/j.conbuildmat.2019.04.189

58. Robayo-Salazar, R., and Jesús, C., Mejía de Gutiérrez, R., and Pacheco-Torgal, F., “Alkali-Activated Binary Mortar Based on Natural Volcanic Pozzolan for Repair Applications,” Journal of Building Engineering, V. 25, 2019, p. 100785. doi: 10.1016/j.jobe.2019.100785

59. Wang, B.; Feng, H.; Huang, H.; Guo, A.; Zheng, Y.; and Wang, Y., “Bonding Properties between Fly Ash/Slag-Based Engineering Geopolymer Composites and Concrete,” Materials, V. 16, No. 12, 2023, p. 4232. doi: 10.3390/ma16124232

60. Gao, Z.; Zhang, P.; Wang, J.; Wang, K.; and Zhang, T., “Interfacial Properties of Geopolymer Mortar and Concrete Substrate: Effect of Polyvinyl Alcohol Fiber and Nano-SiO2 Contents,” Construction and Building Materials, V. 315, 2022, p. 125735. doi: 10.1016/j.conbuildmat.2021.125735

61. Lei, M.; Wang, X.; Meng, H.; Yan, Z.; Lin, J.; and Wu, Z., “Study of Fly Ash-Slag Geopolymer Mortar as a Rapid Strengthening Agent for Concrete Structures,” Construction and Building Materials, V. 394, 2023, p. 132147. doi: 10.1016/j.conbuildmat.2023.132147

62. Zakeremamreza, A.; Kianifar, M. E.; Chibuisi, C.; Ahmadi, E.; and Salami, M. R., “A High-Performance Rubberised Alkali-Activated Mortar for Repair of RC Beams,” Construction and Building Materials, V. 400, 2023, p. 132610. doi: 10.1016/j.conbuildmat.2023.132610

63. Chen, K.; Wu, D.; Yi, M.; Cai, Q.; and Zhang, Z., “Mechanical and Durability Properties of Metakaolin Blended with Slag Geopolymer Mortars used for Pavement Repair,” Construction and Building Materials, V. 281, 2021, p. 122566. doi: 10.1016/j.conbuildmat.2021.122566

64. Dan, H.; Ma, Z.; Li, M.; Ma, S.; and Tan, J., “Early Performance and Bonding Mechanism of Metakaolin (MK)-Ground Granulated Blast Furnace Slag (GGBFS) Based Geopolymer Road Repair Mortar,” The International Journal of Pavement Engineering, V. 24, No. 1, 2023, p. 2252156. doi: 10.1080/10298436.2023.2252156

65. Phoo-ngernkham, T.; Hanjitsuwan, S.; Suksiripattanapong, C.; Thumrongvut, J.; Suebsuk, J.; and Sookasem, S., “Flexural Strength of Notched Concrete Beam Filled with Alkali-Activated Binders under Different Types of Alkali Solutions,” Construction and Building Materials, V. 127, 2016, pp. 673-678. doi: 10.1016/j.conbuildmat.2016.10.053

66. Shen, Y.; Kang, S.; Cheng, G.; Wang, J.; Wu, W.; Wang, X.; Zhao, Y.; and Li, Q., “Effects of Silicate Modulus and Alkali Dosage on the Performance of One-Part Electric Furnace Nickel Slag-Based Geopolymer Repair Materials,” Case Studies in Construction Materials, V. 19, 2023, p. e02224. doi: 10.1016/j.cscm.2023.e02224

67. Wang, J.; Huang, T.; Cheng, G.; Liu, Z.; Li, S.; and Wang, D., “Effects of Fly Ash on the Properties and Microstructure of Alkali-Activated FA/BFS Repairing Mortar,” Fuel, V. 256, 2019, p. 115919. doi: 10.1016/j.fuel.2019.115919

68. Xiong, G.; Guo, X.; and Zhang, H., “Preparation of Epoxy Resin-Geopolymer (ERG) for Repairing and the Microstructures of the New-to-Old Interface,” Composites Part B: Engineering, V. 259, 2023, p. 110731 doi: 10.1016/j.compositesb.2023.110731

69. Zhang, D.; Wang, X.; Kang, S.; Cheng, G.; and Wu, W., “The Effect of Slag and Fly Ash Content on the Properties of Electric Furnace Nickel Slag-Based Geopolymer Used for Repair Materials,” Case Studies in Construction Materials, V. 19, 2023, p. e02284. doi: 10.1016/j.cscm.2023.e02284

70. Hu, S.; Wang, H.; Zhang, G.; and Ding, Q., “Bonding and Abrasion Resistance of Geopolymeric Repair Material Made with Steel Slag,” Cement and Concrete Composites, V. 30, No. 3, 2008, pp. 239-244. doi: 10.1016/j.cemconcomp.2007.04.004

71. He, Y.; Zhang, X.; Hooton, R. D.; and Zhang, X., “Effects of Interface Roughness and Interface Adhesion on New-to-Old Concrete Bonding,” Construction and Building Materials, V. 151, 2017, pp. 582-590. doi: 10.1016/j.conbuildmat.2017.05.049

72. Iffat, S., “Relation Between Density and Compressive Strength of Hardened Concrete,” Concretet Research Letters, V. 6, No. 4, 2015, pp. 182-189.

73. Austin, S.; Robins, P.; and Pan, Y., “Shear Bond Testing of Concrete Repairs,” Cement and Concrete Research, V. 29, No. 7, 1999, pp. 1067-1076. doi: 10.1016/S0008-8846(99)00088-5

74. Lee, W. K. W., and van Deventer, J. S. J., “The Effects of Inorganic Salt Contamination on the Strength and Durability of Geopolymer,” Colloids and Surfaces. A, Physicochemical and Engineering Aspects, V. 211, No. 2-3, 2002, pp. 115-126. doi: 10.1016/S0927-7757(02)00239-X

75. Sinha, A. K., and Talukdar, S., “Enhancement of the Properties of Silicate Activated Ultrafine-Slag Based Geopolymer Mortar Using Retarder,” Construction and Building Materials, V. 313, 2021, p. 125380. doi: 10.1016/j.conbuildmat.2021.125380

76. Alonso, S., and Palomo, A., “Alkaline Activation of Metakaolin and Calcium Hydroxide Mixtures: Influence of Temperature, Activator Concentration and Solids Ratio,” Materials Letters, V. 47, No. 1-2, 2001, pp. 55-62. doi: 10.1016/S0167-577X(00)00212-3

77. Malkawi, A. B.; Nuruddin, M. F.; Fauzi, A.; Almattarneh, H.; and Mohammed, B. S., “Effects of Alkaline Solution on Propeties of the HCFA Geopolymer Mortars,” Procedia Engineering, V. 148, 2016, pp. 710-717. doi: 10.1016/j.proeng.2016.06.581

78. Kani, E. N.; Allahverdi, A.; and Provis, J. L., “Efflorescence Control in Geopolymer Binders Based on Natural Pozzolan,” Cement and Concrete Composites, V. 34, No. 1, 2012, pp. 25-33. doi: 10.1016/j.cemconcomp.2011.07.007

79. Barbosa, V. F. F.; MacKenzie, K. J. D.; and Thaumaturgo, C., “Synthesis and Characterisation of Materials Based on Inorganic Polymers of Alumina and Silica: Sodium Polysialate Polymers,” International Journal of Inorganic Materials, V. 2, No. 4, 2000, pp. 309-317. doi: 10.1016/S1466-6049(00)00041-6

80. Bonaldo, E.; Barros, J. A. O.; and Lourenço, P. B., “Bond Characterization between Concrete Substrate and Repairing SFRC Using Pull-Off Testing,” International Journal of Adhesion and Adhesives, V. 25, No. 6, 2005, pp. 463-474. doi: 10.1016/j.ijadhadh.2005.01.002

81. Al-Majidi, M. H.; Lampropoulos, A. P.; Cundy, A. B.; Tsioulou, O. T.; and Al-Rekabi, S., “A Novel Corrosion Resistant Repair Technique for Existing Reinforced Concrete (RC) Elements Using Polyvinyl Alcohol Fibre Reinforced Geopolymer Concrete (PVAFRGC),” Construction and Building Materials, V. 164, 2018, pp. 603-619. doi: 10.1016/j.conbuildmat.2017.12.213

82. Al-Majidi, M. H.; Lampropoulos, A. P.; Cundy, A. B.; Tsioulou, O. T.; and Alrekabi, S., “Flexural Performance of Reinforced Concrete Beams Strengthened with Fibre Reinforced Geopolymer Concrete under Accelerated Corrosion,” Structures, V. 19, 2019, pp. 394-410. doi: 10.1016/j.istruc.2019.02.005

83. Choudhury, A. H., and Laskar, A. I., “Rehabilitation of Substandard Beam-Column Joint Using Geopolymer,” Engineering Structures, V. 238, 2021, p. 112241 doi: 10.1016/j.engstruct.2021.112241

84. Choudhury, A. H., and Laskar, A. I., “Performance of Geopolymer Mortar and Steel Fiber Reinforced Geopolymer Mortar on Rehabilitation of Seismically Detailed BeamColumn Joint,” Journal of Earthquake Engineering, V. 27, No. 6, 2023, pp. 1607-1628. doi: 10.1080/13632469.2022.2086187

85. Choudhury, A. H., and Laskar, A. I., “Rehabilitation of Exterior Beam-Column Joint by Geopolymer Mortar under Quasi-Static Loading,” ACI Structural Journal, V. 120, No. 5, Sept. 2023, pp. 49-62. doi: 10.14359/51738835

86. Geraldo, R. H.; Teixeira, O. G.; Matos, S. R. C.; Silva, F. G. S.; Gonçalves, J. P.; and Camarini, G., “Study of Alkali-Activated Mortar Used as Conventional Repair in Reinforced Concrete,” Construction and Building Materials, V. 165, 2018, pp. 914-919. doi: 10.1016/j.conbuildmat.2018.01.063

87. Guades, E. J.; Stang, H.; Schmidt, J. W.; and Fischer, G., “Flexural Behavior of Hybrid Fibre-Reinforced Geopolymer Composites (FRGC)-Jacketed RC Beams,” Engineering Structures, V. 235, 2021, p. 112053. doi: 10.1016/j.engstruct.2021.112053

88. Kantarci, F., and Maras, M. M., “Fabrication of Novel Geopolymer Grout as Repairing Material for Application in Damaged RC Beams,” International Journal of Civil Engineering, V. 20, No. 4, 2022, pp. 461-474. doi: 10.1007/s40999-021-00695-9

89. Kantarcı, F., and Maras, M. M., “Formulation of a Novel TiO2-Modified Geopolymer Grout for Application in Damaged Beam-Column Joints,” Construction and Building Materials, V. 317, 2022, p. 125929. doi: 10.1016/j.conbuildmat.2021.125929

90. Khalifa, A.; El-Thakeb, A. E.; El-Sebai, A.; and Elmannaey, A., “Innovative Flexural Repair Technique of Pre-Damaged T-Beams Using Eco-Friendly Steel-Fibre-Reinforced Geopolymer Concrete,” Fibers, V. 12, No. 1, 2024, p. 3. doi: 10.3390/fib12010003

91. Laskar, S. M., and Talukdar, S., “A Study on the Performance of Damaged RC Members Repaired Using Ultra-Fine Slag Based Geopolymer Mortar,” Construction and Building Materials, V. 217, 2019, pp. 216-225. doi: 10.1016/j.conbuildmat.2019.05.033

92. Laskar, S. M., and Talukdar, S., “Slag-Based Geopolymer Concrete as Reinforced Concrete Jacketing Agent,” Journal of Materials in Civil Engineering, ASCE, V. 33, No. 7, 2021, p. 04021150. doi: 10.1061/(ASCE)MT.1943-5533.0003780

93. Mahmood, M.; Salman, W. D.; and Mubarak, H. M., “Effectiveness of Geopolymer in the Strengthening of RC Beams Using Bottom NSM Reinforcements,” Asian Journal of Civil Engineering, V. 24, No. 7, 2023, pp. 2451-2465. doi: 10.1007/s42107-023-00654-w

94. Maras, M. M., “Experimental Behavior of Injected Geopolymer Grout Using Styrene-Butadiene Latex for the Repair and Strengthening of Masonry Walls,” Advances in Structural Engineering, V. 24, No. 11, 2021, pp. 2484-2499. doi: 10.1177/13694332211001513

95. Menna, C.; Asprone, D.; Ferone, C.; Colangelo, F.; Balsamo, A.; Prota, A.; Cioffi, R.; and Manfredi, G., “Use of Geopolymers for Composite External Reinforcement of RC Members,” Composites Part B: Engineering, V. 45, No. 1, 2013, pp. 1667-1676. doi: 10.1016/j.compositesb.2012.09.019

96. Peng, K.-D.; Huang, B.-T.; Xu, L.-Y.; Hu, R.-L.; and Dai, J.-G., “Flexural Strengthening of Reinforced Concrete Beams Using Geopolymer-Bonded Small-Diameter CFRP Bars,” Engineering Structures, V. 256, 2022, p. 113992. doi: 10.1016/j.engstruct.2022.113992

97. Peng, K.-D.; Huang, J.-Q.; Huang, B.-T.; Xu, L.-Y.; and Dai, J.-G., “Shear Strengthening of Reinforced Concrete Beams Using Geopolymer-Bonded Small-Diameter FRP Bars,” Composite Structures, V. 305, 2023, p. 116513. doi: 10.1016/j.compstruct.2022.116513

98. Salman, W. D., and Mansor, A. A., “Fibrous Geopolymer Paste Composites for Near-Surface-Mounted Strengthening of Reinforced Concrete Beams in Flexure,” Case Studies in Construction Materials, V. 14, 2021, p. e00529. doi: 10.1016/j.cscm.2021.e00529

99. Sinha, A. K., and Talukdar, S., “Repairing of Web Opening RC Beam with Ferrocement Laminates Using Alkali Activated Mortar,” Journal of Building Pathology and Rehabilitation, V. 8, No. 1, 2023, p. 57. doi: 10.1007/s41024-023-00302-5

100. Park, R., “Ductility Evaluation from Laboratory and Analytical Testing,” Proceedings of Ninth World Conference on Earthquake Engineering, V. 8, 1988, pp. 605-616.


ALSO AVAILABLE IN:

Electronic Structural Journal



  

Edit Module Settings to define Page Content Reviewer