Analysis of Partial Substitution of Cement with Marble and Granite Powders in Concrete Production

International Concrete Abstracts Portal

The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

  


Title: Analysis of Partial Substitution of Cement with Marble and Granite Powders in Concrete Production

Author(s): Filipe Figueiredo, Gabriela Figueiredo, Eriton Botero, Nathalia Figueiredo, Lino Maia

Publication: Materials Journal

Volume: 119

Issue: 6

Appears on pages(s): 211-219

Keywords: marble and granite; mechanical resistance; residues

DOI: 10.14359/51737196

Date: 11/1/2022

Abstract:
The civil construction industry is characterized as the main consumer of natural resources. However, it has great potential in terms of using industrial residues and by-products in the production of construction materials. Within this context, this study seeks to examine the use of processed marble and granite residues (MGR) generated by the ornamental stone industry as a partial substitute for cement in concrete. To accomplish this, MGR replacements of 5, 7.5, and 10% in relation to cement mass were tested. In terms of the mechanical properties of compressive strength and tensile strength in the produced concrete, the samples with replacement of 5 and 7.5% obtained results that outperformed the reference concrete. On the other hand, the concrete absorption test for the 10% replacement yielded greater results than the pilot sample. In general, this study demonstrates the technical viability of partially substituting cement with MGR in concrete production.

Related References:

1. Brinkman, L., and Miller, S. A., “Environmental Impacts and Environmental Justice Implications of Supplementary Cementitious Materials for Use in Concrete,” Environmental Research: Infrastructure And Sustainability, V. 1, No. 2, 2021, p. 025003

2. Mounika, G.; Baskar, R.; and Sri Kalyana Rama, J., “Rice Husk Ash as a Potential Supplementary Cementitious Material in Concrete Solution Towards Sustainable Construction,” Innovative Infrastructure Solutions, V. 7, No. 1, 2022.

3. Gasques, A. C., “Impactos Ambientais Dos Materiais Da Construção Civil: Breve Revisão Teórica,” Revista Tecnológica, V. 23, No. 1, 2015, pp. 13-24.

4. Karak, T.; Bhagat, R. M.; and Bhattacharyya, P., “Erratum: Municipal Solid Waste Generation, Composition, and Management: The World Scenario (Critical Reviews in Environmental Science and Technology),” Critical Reviews in Environmental Science and Technology, V. 43, No. 2, 2013, p. 215 doi: 10.1080/10643389.2013.770353

5. Pinto, R. B.; Fabrício, E. P.; and Brum, N., “Resíduos Da Construção Civil: Matéria Prima Verde A Ser Investigada,” Brazilian Journal Of Development, V. 5, No. 2, 2019, pp. 1339-1351.

6. “Presidência Da República,” Lei 12.305, http://www.planalto.gov.br/ccivil_03/_ato2007-2010/2010/lei/l12305.htm.10/2010/lei/L12305.htm

7. Garcia Lodeiro, I.; Cristelo, N.; Palomo, A.; and Fernández-Jiménez, A., “Use of Industrial By-Products as Alkaline Cement Activators,” Construction and Building Materials, V. 253, 2020, p. 119000. doi: 10.1016/j.conbuildmat.2020.119000

8. Friol Guedes De Paiva, F., Tamashiro, J. R., Pereira Silva, L. H.; and Kinoshita, A., “Utilization of Inorganic Solid Wastes in Cementitious Materials – A Systematic Literature Review,” Construction and Building Materials, V. 285, 2021.

9. Chinelatto, A. S. A.; Chinelatto, A. L.; Ferreira, D. E. M.; and Gralik, G., “Estudo Da Viabilidade Do Uso De Resíduo De Polimento De Rochas Ornamentais Em Porcelanas,” Revista Materia, V. 20, No. 4, 2015, pp. 1075-1086. doi: 10.1590/S1517-707620150004.0109

10. Bacarji, E.; Toledo Filho, R. D.; Koenders, E. A. B.; Figueiredo, E. P.; and Lopes, J. L. M. P., “Sustainability Perspective of Marble and Granite Residues as Concrete Fillers,” Construction and Building Materials, V. 45, 2013, pp. 1-10. doi: 10.1016/j.conbuildmat.2013.03.032

11. Abirochas, “O Setor De Rochas Ornamentais E De Revestimentos.” Unesp, Geociências, https://www.gov.br/mme/pt-br/assuntos/noticias/convenio-ira-ampliar-exportacoes-e-beneficiar-o-setor-de-rochas-ornamentais-brasileiras.

12. Vidal, F. W. H.; Azevedo, H. C. A.; and Castro, F. N., “Lavra De Rochas Ornamentais,” Tecnologia De Rochas Ornamentais: Pesquisa, Lavra E Beneficiamento, 2014, p. 57.

13. Mello, R. Z., “Evaluation of the Life Cycle of the Use of Ornamental Rock Processing Residue in Cement-Based Civil Construction Materials,” Federal University Os Espiríto Santo, Vitória, Espírito Santo, Brazil, 2018.

14. Moura, W. A., “Utilizaçao Do Resíduo De Corte De Mármore E Confecção De Lajotas Para Piso,” Sitientibus, V. 26, Jan./June 2002, pp. 49-61.

15. Bastos, I. A., “Utilização De Resíduos De Rochas Ornamentais Na Fabricação De Vidros Sodo-Cálcicos Utilização De Resíduos De Rochas Ornamentais Na Fabricação De Vidros Sodo-Cálcicos,” Federal University Of Espirito Santo, Vitória, Espírito Santo, Brazil, 2018.

16. Ruiz-Sánchez, A.; Sánchez-Polo, M.; and Rozalen, M., “Waste Marble Dust: An Interesting Residue to Produce Cement,” Construction and Building Materials, V. 224, 2019, pp. 99-108. doi: 10.1016/j.conbuildmat.2019.07.031

17. Rana, A.; Kalla, P.; Verma, H. K.; and Mohnot, J. K., “Recycling of Dimensional Stone Waste in Concrete: A Review,” Journal of Cleaner Production, V. 135, 2016, pp. 312-331. doi: 10.1016/j.jclepro.2016.06.126

18. Ergün, A., “Effects of the Usage of Diatomite and Waste Marble Powder as Partial Replacement of Cement on the Mechanical Properties of Concrete,” Construction and Building Materials, V. 25, No. 2, 2011, pp. 806-812. doi: 10.1016/j.conbuildmat.2010.07.002

19. Degen, M. K., “Avaliação de Desempenho Mecânico e de Durabilidade em Concretos Produzidos Com Resíduo de Beneficiamento de Rochas Ornamentais Tratado Termicamente (Rbrott),” Federal Universtity of Espirito Santo, Vitória, Espírito Santo, Brazil, 2019.

20. Ministry of Mines and Energy, “Statistical Yearbook of the Non-Metallic Transformation Sector,” http://www.mme.gov.br/web/guest/secretarias/geology-mineracao-e-transformation-mineral/publicacoes.

21. Filho, C.; Rodrigues C.; and De Paula, E., “Technical Report 33 – Ornamental Rock And Coating Profile,” Abirrochas, 2009.

22. Okrusch, M., and Frimmel, H. E., Mineralogy: An Introduction to Minerals, Rocks, and Mineral Deposits, Springer Nature, Berlin, Germany, 2020.

23. Chicon, M. C., “Fine Waste from the Ornamental Rock Industry: Deposited and Segregated Materials,” Federal University of Espirito Santo, Vitória, Espírito Santo, Brazil, 2019.

24. Brazilian Association of Technical Standards, “NBR 10004 – Solid Waste – Classification,” Rio de Janeiro, Brazil, 2004.

25. Buzzi, D. C., “Study of Classification and Quantification of Slats Generated in the Process of Processing Ornamental Rocks,” Federal University of Espirito Santo, Vitória, Espírito Santo, Brazil, 2008.

26. Mehta, P. K., and Monteiro, P. J. M., Concrete: Microstructure, Properties and Materials, second edition, IBRACON, São Paulo, Brazil, 2014.

27. Oliveira, A. M., “Effect of Mineral Additions Incorporated in Concrete on Thermodynamic and Kinetic Parameters of Chloride-Induced Reinforcement Corrosion,” Construction and Building Materials, V. 192, 2018, pp. 467-477. doi: 10.1016/j.conbuildmat.2018.10.100

28. Gonçalves, J. P., “Use of Granite Cutting Residue (RCG) as Addition for Concrete Production,” Federal University of Rio Grande Do Sul, Vitória, Espírito Santo, Brazil, 2000.

29. “Study on Marble Powder as Partial Replacement of Cement in Concrete,” Global Research and Development Journal for Engineering, V. 2, No. 7, 2017, pp. 77-80.

30. Munir, M. J.; Abbas, S.; Nehdi, M. L.; Kazmi, S. M. S.; and Khitab, A., “Development of Eco-Friendly Fired Clay Bricks Incorporating Recycled Marble Powder,” Journal of Materials in Civil Engineering, ASCE, V. 30, No. 5, 2018, p. 04018069 doi: 10.1061/(ASCE)MT.1943-5533.0002259

31. Patil, A. R., and Sathe, S. B., “Feasibility of Sustainable Construction Materials for Concrete Paving Blocks: A Review on Waste Foundry Sand and Other Materials,” Materials Today: Proceedings, V. 43, 2021, pp. 1552-1561. doi: 10.1016/j.matpr.2020.09.402

32. Majeed, M.; Khitab, A.; Anwar, W.; Khan, R. B. N.; Jalil, A.; and Tariq, Z., “Evaluation of Concrete with Partial Replacement of Cement by Waste Marble Powder,” Civil Engineering Journal, V. 7, No. 1, 2021, pp. 59-70. doi: 10.28991/cej-2021-03091637

33. Lakatos, E. M., and Marconi, M. A., Methodology of Scientific Work: Research Projects/Bibliographic Research/Doctoral Theses, Master’s Dissertations, Course Completion Papers, eighth edition, São Paulo, Brazil, 2017.

34. Brazilian Association of Technical Standards, “NBR 5739 – Concrete – Compression Test of Cylindrical Specimens,” Rio de Janeiro, Brazil, 2018.

35. Brazilian Association of Technical Standards, “NBR 7211 – Aggregates for Concrete – Specification,” Rio de Janeiro, Brazil, 2009.

36. Brazilian Association of Technical Standards, “NBR 12653 – Pozolanic Materials – Requirements,” Rio de Janeiro, Brazil, 2014.

37. Brazilian Association of Technical Standards, “NBR 5738 – Concrete – Procedure for Molding and Curing Specimens,” Rio de Janeiro, Brazil, 2015.

38. Brazilian Association of Technical Standards, “NBR NM 67 - Concrete - Determination of Consistency by the Reduction of the Cone Trunk,” Rio de Janeiro, Brazil, 1998.

39. Bauer, F., Building Materials, sixth edition, Rio de Janeiro, Brazil, 2019.

40. Dal Molin, D. C. C., “Mineral Additions,” IBRACON, V. 1, 2011, 1946 pp.

41. Ramos, T.; Matos, A. M.; Schmidt, B.; Rio, J.; and Sousa-Coutinho, J., “Granitic Quarry Sludge Waste in Mortar: Effect on Strength and Durability,” Construction and Building Materials, V. 47, 2013, pp. 1001-1009. doi: 10.1016/j.conbuildmat.2013.05.098

42. Amin, S. K.; Allam, M. E.; Garas, G. L.; and Ezz, H., “A Study of the Chemical Effect of Marble and Granite Slurry on Green Mortar Compressive Strength,” Bulletin of the National Research Center, V. 44, No. 1, 2020, p. 19 doi: 10.1186/s42269-020-0274-8

43. Mehta, P. K., and Monteiro, P. J. M., Concrete: Structure, Properties and Materials, fourth edition, 2014, pp. 1-675.

44. Singh, M.; Srivastava, A.; and Bhunia, D., “An Investigation on Effect of Partial Replacement of Cement by Waste Marble Slurry,” Construction and Building Materials, V. 134, 2017, pp. 471-488. doi: 10.1016/j.conbuildmat.2016.12.155

45. Rashwan, M. A.; Al-Basiony, T. M.; Mashaly, A. O.; and Khalil, M. M., “Behaviour of Fresh and Hardened Concrete Incorporating Marble and Granite Sludge as Cement Replacement,” Journal of Building Engineering, V. 32, 2020.

46. Gencel, O.; Ozel, C.; Koksal, F.; Erdogmus, E.; Martínez-Barrera, G.; and Brostow, W., “Properties of Concrete Paving Blocks Made with Waste Marble,” Journal of Cleaner Production, V. 21, No. 1, 2012, pp. 62-70. doi: 10.1016/j.jclepro.2011.08.023

47. Rodrigues, R.; De Brito, J.; and Sardinha, M., “Mechanical Properties of Structural Concrete Containing Very Fine Aggregates from Marble Cutting Sludge,” Construction and Building Materials, V. 77, 2015, pp. 349-356. doi: 10.1016/j.conbuildmat.2014.12.104

48. Neville, A. M., Properties of Concrete, fifth edition, São Paulo, Brazil, 2016.

49. Farias, L. A.; Lopes, A. N. M.; Stival, M. L. et al., “Direct Tensile Tests on Concrete Specimens,” https://www.cgti.org.br/publicacoes/wp-content/uploads/2016/04/ensaios-de-trac%cc%a7a%cc%83o-direta-em-corpos-de-prova-de-concreto.pdf. (last accessed July 1, 2022)

50. Kim, J.-K.; Han, S. H.; and Song, Y. C. “Effect of Temperature and Aging on the Mechanical Properties of Concrete Part I. Experimental Results,” Cement and Concrete Research, V. 32, No. 7, July 2002, pp. 1087-1094.

51. Brazilian Association Of Technical Standards, “NBR 9778 – Hardened Mortar and Concrete – Determination of Water Absorption, Void Index and Specific Mass,” Rio de Janeiro, Brazil, 2005.

52. Sadek, D. M.; El-Attar, M. M.; and Ali, H. A., “Reusing of Marble and Granite Powders in Self-Compacting Concrete for Sustainable Development,” Journal of Cleaner Production, V. 121, 2016, pp. 19-32. doi: 10.1016/j.jclepro.2016.02.044


ALSO AVAILABLE IN:

Electronic Materials Journal



  

Edit Module Settings to define Page Content Reviewer