Title:
Behavior of Hollow Glass Fiber-Reinforced Polymer- Reinforced Concrete Columns under Axial Load: Experimental and Theoretical Investigation
Author(s):
Mohammed Gamal Gouda, Hamdy M. Mohamed, Allan C. Manalo, and Brahim Benmokrane
Publication:
Structural Journal
Volume:
119
Issue:
6
Appears on pages(s):
289-302
Keywords:
axial load; confinement and ductility; cracking and mode of failure; design codes; glass fiber-reinforced polymer (GFRP) longitudinal bars; GFRP spirals; hollow circular reinforced concrete column
DOI:
10.14359/51736117
Date:
11/1/2022
Abstract:
This study investigated the behavior of hollow concrete columns (HCCs) reinforced with glass fiber-reinforced polymer (GFRP) bars and spirals under axial loading. Nine columns were constructed with a hollow circular cross section having 305/113 mm outer/inner diameter and 1500 mm height, while five solid columns were fabricated as references. Test parameters included the influence of the longitudinal reinforcement ratio (1.89, 2.53, and 3.79%), type (GFRP and steel), and cross-section configuration (hollow and solid) on the behavior of HCCs. The test results show that increasing the reinforcement ratio had no significant effect on the
peak load but significantly enhanced the confinement efficiency and ductility of the HCCs reinforced with GFRP bars and spirals. The GFRP longitudinal reinforcement contributed to resisting the peak loads by an average of 11% of the ultimate capacity. Thus, considering the contribution of GFRP bars in the recent design guidelines can safely estimate the ultimate capacity of the HCCs.
Related References:
AASHTO, 2018, “AASHTO LRFD Bridge Design Guide Specifications for GFRP-Reinforced Concrete,” second edition, American Association of State Highway and Transportation Officials, Washington, DC.
ACI Committee 318, 2019, “Building Code Requirements for Structural Concrete (ACI 318-19) and Commentary (ACI 318R-19),” American Concrete Institute, Farmington Hills, MI, 624 pp.
ACI Committee 440, 2015, “Guide for the Design and Construction of Structural Concrete Reinforced with Fiber-Reinforced Polymer (FRP) Bars (ACI 440.1R-15),” American Concrete Institute, Farmington Hills, MI, 88 pp.
Afifi, M. Z.; Mohamed, H. M.; and Benmokrane, B., 2014a, “Axial Capacity of Circular Concrete Columns Reinforced with GFRP Bars and Spirals,” Journal of Composites for Construction, ASCE, V. 18, No. 1, p. 04013017. doi: 10.1061/(ASCE)CC.1943-5614.0000438
Afifi, M. Z.; Mohamed, H. M.; and Benmokrane, B., 2014b, “Strength and Axial Behavior of Circular Concrete Columns Reinforced with CFRP Bars and Spirals,” Journal of Composites for Construction, ASCE, V. 18, No. 2, p. 04013035. doi: 10.1061/(ASCE)CC.1943-5614.0000430
Afifi, M. Z.; Mohamed, H. M.; Chaallal, O.; and Benmokrane, B., 2015, “Confinement Model for Concrete Columns Internally Confined with Carbon FRP Spirals and Hoops,” Journal of Structural Engineering, ASCE, V. 141, No. 9, p. 04014219. doi: 10.1061/(ASCE)ST.1943-541X.0001197
Ahmed, E. A.; El-Salakawy, E. F.; and Benmokrane, B., 2010, “Performance Evaluation of Glass Fiber-Reinforced Polymer Shear Reinforcement for Concrete Beams,” ACI Structural Journal, V. 107, No. 1, Jan.-Feb., pp. 53-62.
Al-Saadi, A. U.; Aravinthan, T.; and Lokuge, W., 2018, “Structural Applications of Fibre Reinforced Polymer (FRP) Composite Tubes: A Review of Columns Members,” Composite Structures, V. 204, pp. 513-524. doi: 10.1016/j.compstruct.2018.07.109
Alajarmeh, O.; Manalo, A.; Benmokrane, B.; Ferdous, W.; Mohammed, A.; Abousnina, R.; Elchalakani, M.; and Edoo, A., 2020, “Behavior of Circular Concrete Columns Reinforced with Hollow Composite Sections and GFRP Bars,” Marine Structures, V. 72, Article No. 102785. doi: 10.1016/j.marstruc.2020.102785
AlAjarmeh, O. S.; Manalo, A. C.; Benmokrane, B.; Karunasena, W.; and Mendis, P., 2019b, “Axial Performance of Hollow Concrete Columns Reinforced with GFRP Composite Bars with Different Reinforcement Ratios,” Composite Structures, V. 213, pp. 153-164. doi: 10.1016/j.compstruct.2019.01.096
AlAjarmeh, O. S.; Manalo, A. C.; Benmokrane, B.; Karunasena, W.; Mendis, P.; and Nguyen, K. T. Q., 2019a, “Compressive Behavior of Axially Loaded Circular Hollow Concrete Columns Reinforced with GFRP Bars and Spirals,” Construction and Building Materials, V. 194, pp. 12-23. doi: 10.1016/j.conbuildmat.2018.11.016
AlAjarmeh, O. S.; Manalo, A. C.; Benmokrane, B.; Vijay, P. V.; Ferdous, W.; and Mendis, P., 2019c, “Novel Testing and Characterization of GFRP Bars in Compression,” Construction and Building Materials, V. 225, pp. 1112-1126. doi: 10.1016/j.conbuildmat.2019.07.280
Ali, A. H.; Mohamed, H. M.; and Benmokrane, B., 2021, “Composite FRP Reinforced Concrete Members with Fiber Reinforced Polymer Spirals,” Structures, V. 33, pp. 1868-1877. doi: 10.1016/j.istruc.2021.05.007
ASTM C39/C39M-15, 2015, “Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens,” ASTM International, West Conshohocken, PA, 7 pp.
Benmokrane, B.; Mohamed, H. M.; Mohamed, K.; and Mousa, S., 2021, “Recent Canadian Developments Related to Unconventional Reinforcing for Concrete Structures, Design Codes, and Applications in Buildings and Bridges,” Field Applications of Non-Conventional Reinforcing and Strengthening Methods for Bridges and Structures, SP-346, Y. J. Kim, S. Nolan, and A. Nanni, eds., American Concrete Institute, Farmington Hills, MI, pp. 93-112.
Benzecry, V.; Rossini, M.; Morales, C.; Nolan, S.; and Nanni, A., 2021, “Design of Marine Dock Using Concrete Mixed with Seawater and FRP Bars,” Journal of Composites for Construction, ASCE, V. 25, No. 1, p. 05020006. doi: 10.1061/(ASCE)CC.1943-5614.0001100
CSA S6:19, 2019, “Canadian Highway Bridge Design Code,” CSA Group, Toronto, ON, Canada, 1182 pp.
CSA S806-12 (R2017), 2012, “Design and Construction of Building Structures with Fibre-Reinforced Polymers,” CSA Group, Toronto, ON, Canada.
De Luca, A.; Matta, F.; and Nanni, A., 2010, “Behavior of Full-Scale Glass Fiber-Reinforced Polymer Reinforced Concrete Columns under Axial Load,” ACI Structural Journal, V. 107, No. 5, Sept.-Oct., pp. 589-596.
Hadhood, A.; Mohamed, H. M.; Benmokrane, B.; Nanni, A.; and Shield, C. K., 2019, “Assessment of Design Guidelines of Concrete Columns Reinforced with Glass Fiber-Reinforced Polymer Bars,” ACI Structural Journal, V. 116, No. 4, July, pp. 193-207. doi: 10.14359/51715663
Hadhood, A.; Mohamed, H. M.; Ghrib, F.; and Benmokrane, B., 2017, “Efficiency of Glass-Fiber Reinforced-Polymer (GFRP) Discrete Hoops and Bars in Concrete Columns under Combined Axial and Flexural Loads,” Composites Part B: Engineering, V. 114, pp. 223-236. doi: 10.1016/j.compositesb.2017.01.063
Hadi, M. N. S.; Ahmad, H.; and Sheikh, M. N., 2021, “Effect of Using GFRP Reinforcement on the Behavior of Hollow-Core Circular Concrete Columns,” Journal of Composites for Construction, ASCE, V. 25, No. 1, p. 06020003. doi: 10.1061/(ASCE)CC.1943-5614.0001103
Hadi, M. N. S.; Hasan, H. A.; and Sheikh, M. N., 2017, “Experimental Investigation of Circular High-Strength Concrete Columns Reinforced with Glass Fiber-Reinforced Polymer Bars and Helices under Different Loading Conditions,” Journal of Composites for Construction, ASCE, V. 21, No. 4, p. 04017005. doi: 10.1061/(ASCE)CC.1943-5614.0000784
Hadi, M. N. S.; Karim, H.; and Sheikh, M. N., 2016, “Experimental Investigations on Circular Concrete Columns Reinforced with GFRP Bars and Helices under Different Loading Conditions,” Journal of Composites for Construction, ASCE, V. 20, No. 4, p. 04016009. doi: 10.1061/(ASCE)CC.1943-5614.0000670
Han, Q.; Du, X.; Zhou, Y.; and Lee, G. C., 2013, “Experimental Study of Hollow Rectangular Bridge Column Performance under Vertical and Cyclically Bilateral Loads,” Earthquake Engineering and Engineering Vibration, V. 12, No. 3, pp. 433-445. doi: 10.1007/s11803-013-0184-y
Lee, J.-H.; Choi, J.-H.; Hwang, D.-K.; and Kwahk, I.-J., 2015, “Seismic Performance of Circular Hollow RC Bridge Columns,” KSCE Journal of Civil Engineering, V. 19, No. 5, pp. 1456-1467. doi: 10.1007/s12205-014-1173-z
Liang, X.; Beck, R.; and Sritharan, S., 2015, “Understanding the Confined Concrete Behavior on the Response of Hollow Bridge Columns,” Report No. CA14‐2264, Department of Civil, Construction and Environmental Engineering, Iowa State University, Ames, IA, 336 pp.
Lignola, G. P.; Prota, A.; Manfredi, G.; and Cosenza, E., 2007a, “Experimental Performance of RC Hollow Columns Confined with CFRP,” Journal of Composites for Construction, ASCE, V. 11, No. 1, pp. 42-49. doi: 10.1061/(ASCE)1090-0268(2007)11:1(42)
Lignola, G. P.; Prota, A.; Manfredi, G.; and Cosenza, E., 2007b, “Deformability of Reinforced Concrete Hollow Columns Confined with CFRP,” ACI Structural Journal, V. 104, No. 5, Sept.-Oct., pp. 629-637.
Lignola, G. P.; Prota, A.; Manfredi, G.; and Cosenza, E., 2009, “Non-Linear Modeling of RC Rectangular Hollow Piers Confined with CFRP,” Composite Structures, V. 88, No. 1, pp. 56-64. doi: 10.1016/j.compstruct.2008.10.001
Mander, J. B.; Priestley, M. J. N.; and Park, R., 1988, “Theoretical Stress-Strain Model for Confined Concrete,” Journal of Structural Engineering, ASCE, V. 114, No. 8, pp. 1804-1826. doi: 10.1061/(ASCE)0733-9445(1988)114:8(1804)
Maranan, G. B.; Manalo, A. C.; Benmokrane, B.; Karunasena, W.; and Mendis, P., 2016, “Behavior of Concentrically Loaded Geopolymer-Concrete Circular Columns Reinforced Longitudinally and Transversely with GFRP Bars,” Engineering Structures, V. 117, pp. 422-436. doi: 10.1016/j.engstruct.2016.03.036
Mo, Y. L.; Wong, D. C.; and Maekawa, K., 2003, “Seismic Performance of Hollow Bridge Columns,” ACI Structural Journal, V. 100, No. 3, May-June, pp. 337-348.
Mohamed, H. M., and Benmokrane, B., 2014, “Design and Performance of Reinforced Concrete Water Chlorination Tank Totally Reinforced with GFRP Bars: Case Study,” Journal of Composites for Construction, ASCE, V. 18, No. 1, p. 05013001. doi: 10.1061/(ASCE)CC.1943-5614.0000429
Mohamed, H. M.; Afifi, M. Z.; and Benmokrane, B., 2014, “Performance Evaluation of Concrete Columns Reinforced Longitudinally with FRP Bars and Confined with FRP Hoops and Spirals under Axial Load,” Journal of Bridge Engineering, ASCE, V. 19, No. 7, p. 04014020. doi: 10.1061/(ASCE)BE.1943-5592.0000590
Pantelides, C. P.; Gibbons, M. E.; and Reaveley, L. D., 2013, “Axial Load Behavior of Concrete Columns Confined with GFRP Spirals,” Journal of Composites for Construction, ASCE, V. 17, No. 3, pp. 305-313. doi: 10.1061/(ASCE)CC.1943-5614.0000357
Pessiki, S., and Pieroni, A., 1997, “Axial Load Behavior of Large-Scale Spirally-Reinforced High-Strength Concrete Columns,” ACI Structural Journal, V. 94, No. 3, May-June, pp. 304-313.
Popovics, S., 1973, “A Numerical Approach to the Complete Stress-Strain Curve of Concrete,” Cement and Concrete Research, V. 3, No. 5, pp. 583-599. doi: 10.1016/0008-8846(73)90096-3
Tabatabaei, A.; Eslami, A.; Mohamed, H. M.; and Benmokrane, B., 2018, “Strength of Compression Lap-Spliced GFRP Bars in Concrete Columns with Different Splice Lengths,” Construction and Building Materials, V. 182, pp. 657-669. doi: 10.1016/j.conbuildmat.2018.06.154
Tobbi, H.; Farghaly, A. S.; and Benmokrane, B., 2012, “Concrete Columns Reinforced Longitudinally and Transversally with Glass Fiber-Reinforced Polymer Bars,” ACI Structural Journal, V. 109, No. 4, July-Aug., pp. 551-558.
Yeh, Y.-K.; Mo, Y. L.; and Yang, C. Y., 2001, “Seismic Performance of Hollow Circular Bridge Piers,” ACI Structural Journal, V. 98, No. 6, Nov.-Dec., pp. 862-871.