Title:
Acoustic and Thermal Analyses of Self-Consolidating Lightweight Rubberized Concretes
Author(s):
A. F. Angelin, E. J. P. de Miranda Junior, J. M. C. dos Santos, W. R. Osório, R. C. Cecche Lintz, and L. A. Gachet
Publication:
Materials Journal
Volume:
119
Issue:
6
Appears on pages(s):
53-64
Keywords:
acoustic attenuation; lightweight concrete; mechanical resistances; self-consolidating concrete (SCC); thermal conductivity; waste tire rubber
DOI:
10.14359/51736005
Date:
11/1/2022
Abstract:
Self-consolidating concretes (SCCs) have been widely studied
in recent years. However, investigations concerning self-consolidating lightweight rubberized concrete (SCLRC) are
scarce. This paper focuses on both the expanded clay and waste tire rubber contents. Both the fresh and hardened properties are evaluated. Additionally, the thermal and acoustic properties are also analyzed. Because the expanded clay has a rounded shape without edges or tips, presenting a smooth and glassy surface, it improves the workability and spreading of the concrete. Also, the mechanical behavior, together with the lightweight effect and associated with thermal conductivity, is a remarkable property attained.
The rubber acts negatively on the properties in the fresh state of SCLRC. The compressive strength of SCLRC is lower than that of conventional SCC. It is found that with the use of light aggregates, which are replaced with conventional aggregates, an increase of approximately 50% in the acoustic attenuation and a decrease of 70% in the thermal conductivity are attained. This induces better thermal and acoustic insulation than the conventional concrete associated with being environmentally friendly.
Related References:
1. Cotto-Ramos, A.; Dávila, S.; Torres-García, W.; and Cáceres-Fernández, A., “Experimental Design of Concrete Mixtures Using Recycled Plastic, Fly Ash, and Silica Nanoparticles,” Construction and Building Materials, V. 254, 2020, p. 119207. doi: 10.1016/j.conbuildmat.2020.119207
2. Akbarzadeh Bengar, H.; Shahmansouri, A. A.; Akkas Zangebari Sabet, N.; Kabirifar, K.; and Tam, W. Y., “Impact of Elevated Temperatures on the Structural Performance of Recycled Rubber Concrete: Experimental and Mathematical Modeling,” Construction and Building Materials, V. 255, 2020, p. 119374. doi: 10.1016/j.conbuildmat.2020.119374
3. Polydorou, T.; Constantinides, G.; Neocleous, K.; Kyriakides, N.; Koutsokeras, L.; Chrysostomou, C.; and Hadjimitsis, D., “Effects of Pre-Treatment Using Waste Quarry Dust on the Adherence of Recycled Tyre Rubber Particles to Cementitious Paste in Rubberised Concrete,” Construction and Building Materials, V. 254, 2020, p. 119325. doi: 10.1016/j.conbuildmat.2020.119325
4. Bogas, J. A.; Gomes, A.; and Pereira, M. F. C., “Self-Compacting Lightweight Concrete Produced with Expanded Clay Aggregate,” Construction and Building Materials, V. 35, 2012, pp. 1013-1022. doi: 10.1016/j.conbuildmat.2012.04.111
5. Gesoglu, M.; Güneyisi, E.; Ozturan, T.; Oz, H. O.; and Asaad, D. S., “Shear Thickening Intensity of Self-Compacting Concretes Containing Rounded Lightweight Aggregates,” Construction and Building Materials, V. 79, 2015, pp. 40-47. doi: 10.1016/j.conbuildmat.2015.01.012
6. Lv, J.; Zhou, T.; Du, Q.; and Wu, H., “Effects of Rubber Particles on Mechanical Properties of Lightweight Aggregate Concrete,” Construction and Building Materials, V. 91, 2015, pp. 145-149. doi: 10.1016/j.conbuildmat.2015.05.038
7. Gupta, T.; Chaudhary, S.; and Sharma, R. K., “Mechanical and Durability Properties of Waste Rubber Fiber Concrete with and without Silica Fume,” Journal of Cleaner Production, V. 112, 2016, pp. 702-711. doi: 10.1016/j.jclepro.2015.07.081
8. Angelin, A. F.; Miranda Jr., E. J. P.; Santos, J. M. C. D.; Lintz, R. C. C.; and Gachet-Barbosa, L. A., “Rubberized Mortar: The Influence of Aggregate Granulometry in Mechanical Resistances and Acoustic Behavior,” Construction and Building Materials, V. 200, 2019, pp. 248-254. doi: 10.1016/j.conbuildmat.2018.12.123
9. Heikal, M.; Zohdy, K. M.; and Abdelkreem, M., “Mechanical, Microstructure and Rheological Characteristics of High Performance Self-Compacting Cement Pastes and Concrete Containing Ground Clay Bricks,” Construction and Building Materials, V. 38, 2013, pp. 101-109. doi: 10.1016/j.conbuildmat.2012.07.114
10. Lotfy, A.; Hossain, K. M. A.; and Lachemi, M., “Lightweight Self-Consolidating Concrete with Expanded Shale Aggregates: Modelling and Optimization,” International Journal of Concrete Structures and Materials, V. 9, No. 2, 2015, pp. 185-206. doi: 10.1007/s40069-015-0096-5
11. Nepomuceno, M. C. S.; Pereira-de-Oliveira, L. A.; and Pereira, S. F., “Mix Design of Structural Lightweight Self-Compacting Concrete Incorporating Coarse Lightweight Expanded Clay Aggregates,” Construction and Building Materials, V. 166, 2018, pp. 373-385. doi: 10.1016/j.conbuildmat.2018.01.161
12. Angelin, A. F.; Cecche Lintz, R. C.; Osório, W. R.; and Gachet, L. A., “Evaluation of Efficiency Factor of a Self-Compacting Lightweight Concrete with Rubber and Expanded Clay Contents,” Construction and Building Materials, V. 257, 2020, p. 119573. doi: 10.1016/j.conbuildmat.2020.119573
13. ACI Committee 213, “Guide for Structural Lightweight Aggregate Concrete (ACI 213R-03),” American Concrete Institute, Farmington Hills, MI, 2003, 38 pp.
14. EFNARC, “Specification and Guidelines for Self-Consolidating Concrete,” European Federation for Specialist Construction Chemicals and Concrete Systems, London, UK, 2002.
15. Ting, T. Z. H.; Rahman, M. E.; and Lau, H. H., “Sustainable Lightweight Self-Compacting Concrete Using Oil Palm Shell and Fly Ash,” Construction and Building Materials, V. 264, 2020, p. 120590. doi: 10.1016/j.conbuildmat.2020.120590
16. Gopi, R., and Revathi, V., “Influence of Presaturated Light Expanded Clay,” Romanian Journal of Materials, V. 49, No. 3, 2019, pp. 370-378.
17. Nahhab, A. H., and Ketab, A. K., “Influence of Content and Maximum Size of Light Expanded Clay Aggregate on the Fresh, Strength, and Durability Properties of Self-Compacting Lightweight Concrete Reinforced with Micro Steel Fibers,” Construction and Building Materials, V. 233, 2020, p. 117922. doi: 10.1016/j.conbuildmat.2019.117922
18. Valizadeh, A.; Hamidi, F.; Aslani, F.; and Shaikh, F. U. A., “The Effect of Specimen Geometry on the Compressive and Tensile Strengths of Self-Compacting Rubberised Concrete Containing Waste Rubber Granules,” Structures, V. 27, May 2020, pp. 1646-1659. doi: 10.1016/j.istruc.2020.07.069
19. Anil Thakare, A.; Siddique, S.; Sarode, S. N.; Deewan, R.; Gupta, V.; Gupta, S.; and Chaudhary, S., “A Study on Rheological Properties of Rubber Fiber Dosed Self-Compacting Mortar,” Construction and Building Materials, V. 262, 2020, p. 120745 doi: 10.1016/j.conbuildmat.2020.120745
20. Wang, J.; Dai, Q.; Si, R.; Ma, Y.; and Guo, S., “Fresh and Mechanical Performance and Freeze-Thaw Durability of Steel Fiber-Reinforced Rubber Self-Consolidating Concrete (SRSCC),” Journal of Cleaner Production, V. 277, 2020, p. 123180. doi: 10.1016/j.jclepro.2020.123180
21. Pessette, J. B., and Pelisser, F., “Efeito da borracha reciclada de pneus na condutividade de paredes de concreto,” Artigo submetido ao curso de Engenharia Civil da UNESC, Criciúma/SC, No. 1, 2012, pp. 1-15. (in Portuguese)
22. Oktay, H.; Yumrutaş, R.; and Akpolat, A., “Mechanical and Thermophysical Properties of Lightweight Aggregate Concretes,” Construction and Building Materials, V. 96, 2015, pp. 217-225. doi: 10.1016/j.conbuildmat.2015.08.015
23. Zhang, B., and Poon, C. S., “Sound Insulation Properties of Rubberized Lightweight Aggregate Concrete,” Journal of Cleaner Production, V. 172, 2018, pp. 3176-3185. doi: 10.1016/j.jclepro.2017.11.044
24. Briccola, D.; Ortiz, M.; and Pandolfi, A., “Experimental Validation of Metaconcrete Blast Mitigation Properties,” Journal of Applied Mechanics, V. 84, No. 3, 2017, p. 031001. doi: 10.1115/1.4035259
25. Miranda Jr., E. J. P.; Angelin, A. F.; Silva, F. M.; and Santos, J. M. C., “Passive Vibration Control Using a Metaconcrete Thin Plate,” Cerâmica, V. 65, 2019, pp. 27-33. doi: 10.1590/0366-6913201965s12597
26. Briccola, D.; Cuni, M.; De Juli, A.; Ortiz, M.; and Pandolfi, A., “Experimental Validation of the Attenuation Properties in the Sonic Range of Metaconcrete Containing Two Types of Resonant Inclusions,” Experimental Mechanics, V. 61, 2020, pp. 515-532.
27. Briccola, D., and Pandolfi, A., “Analysis on the Dynamic Wave Attenuation Properties of Metaconcrete Considering a Quasi-Random Arrangement of Inclusions,” Frontiers in Materials, V. 7, 2021. doi: 10.3389/fmats.2020.615189.
28. Aliabdo, A. A.; Abd Elmoaty, A. E. M.; and Abdelbaset, M. M., “Utilization of Waste Rubber in Non-Structural Applications,” Construction and Building Materials, V. 91, 2015, pp. 195-207. doi: 10.1016/j.conbuildmat.2015.05.080
29. Albano, C.; Camacho, N.; Reyes, J.; Feliu, J. L.; and Hernández, M., “Influence of Scrap Rubber Addition to Portland I Concrete Composites: Destructive and Non-Destructive Testing,” Composite Structures, V. 71, No. 3-4, 2005, pp. 439-446. doi: 10.1016/j.compstruct.2005.09.037
30. Eiras, J. N.; Segovia, F.; Borrachero, M. V.; Monzó, J.; Bonilla, M.; and Payá, J., “Physical and Mechanical Properties of Foamed Portland Cement Composite Containing Crumb Rubber from Worn Tires,” Materials & Design, V. 59, 2014, pp. 550-557. doi: 10.1016/j.matdes.2014.03.021
31. Assaggaf, R. A.; Ali, M. R.; Al-Dulaijan, S. U.; and Maslehuddin, M., “Properties of Concrete with Untreated and Treated Crumb Rubber—A Review,” Journal of Materials Research and Technology, V. 11, 2021, pp. 1753-1798. doi: 10.1016/j.jmrt.2021.02.019
32. Zheng, L.; Sharon Huo, X.; and Yuan, Y., “Experimental Investigation on Dynamic Properties of Rubberized Concrete,” Construction and Building Materials, V. 22, No. 5, 2008, pp. 939-947. doi: 10.1016/j.conbuildmat.2007.03.005
33. Carbajo, J.; Esquerdo-Lloret, T. V.; Ramis, J.; Nadal-Gisbert, A. V.; and Denia, F. D., “Acoustic Properties of Porous Concrete Made from Arlite and Vermiculite Lightweight Aggregates,” Materiales de Construcción, V. 65, No. 320, 2015, p. e072. doi: 10.3989/mc.2015.01115
34. Holmes, N.; Browne, A.; and Montague, C., “Acoustic Properties of Concrete Panels with Crumb Rubber as a Fine Aggregate Replacement,” Construction and Building Materials, V. 73, 2014, pp. 195-204. doi: 10.1016/j.conbuildmat.2014.09.107
35. Sukontasukkul, P., “Use of Crumb Rubber to Improve Thermal and Sound Properties of Pre-Cast Concrete Panel,” Construction and Building Materials, V. 23, No. 2, 2009, pp. 1084-1092. doi: 10.1016/j.conbuildmat.2008.05.021
36. Park, S. B.; Seo, D. S.; and Lee, J., “Studies on the Sound Absorption Characteristics of Porous Concrete Based on the Content of Recycled Aggregate and Target Void Ratio,” Cement and Concrete Research, V. 35, No. 9, 2005, pp. 1846-1854. doi: 10.1016/j.cemconres.2004.12.009
37. Colom, X.; Cañavate, J.; Carrillo, F.; and Lis, M. J., “Acoustic and Mechanical Properties of Recycled Polyvinyl Chloride/Ground Tyre Rubber Composites,” Journal of Composite Materials, V. 48, No. 9, 2014, pp. 1061-1069. doi: 10.1177/0021998313482154
38. Ghizdăveț, Z.; Ștefan, B.-M.; Nastac, D.; Vasile, O.; and Bratu, M., “Sound Absorbing Materials Made by Embedding Crumb Rubber Waste in a Concrete Matrix,” Construction and Building Materials, V. 124, 2016, pp. 755-763. doi: 10.1016/j.conbuildmat.2016.07.145
39. Corredor-Bedoya, A. C.; Zoppi, R. A.; and Serpa, A. L., “Composites of Scrap Tire Rubber Particles and Adhesive Mortar—Noise Insulation Potential,” Cement and Concrete Composites, V. 82, 2017, pp. 45-66. doi: 10.1016/j.cemconcomp.2017.05.007
40. Kim, H. K.; Jeon, J. H.; and Lee, H. K., “Workability, and Mechanical, Acoustic and Thermal Properties of Lightweight Aggregate Concrete with a High Volume of Entrained Air,” Construction and Building Materials, V. 29, 2012, pp. 193-200. doi: 10.1016/j.conbuildmat.2011.08.067
41. Bompan, K. F., and Haach, V. G., “Ultrasonic Tests in the Evaluation of the Stress Level in Concrete Prisms Based on the Acoustoelasticity,” Construction and Building Materials, V. 162, 2018, pp. 740-750. doi: 10.1016/j.conbuildmat.2017.11.153
42. Haach, V. G.; Carrazedo, R.; Ribeiro, P. O.; Ferreira, L. P. A.; and Abe, I. P., “Evaluation of Elastic Anisotropic Relations for Plain Concrete Using Ultrasound and Impact Acoustic Tests,” Journal of Materials in Civil Engineering, ASCE, V. 33, No. 2, 2021, p. 04020448. doi: 10.1061/(ASCE)MT.1943-5533.0003562
43. Röthig, H., “Measuring Ultrasonic Attenuation in Concrete. Batiment International,” Building Research and Practice, V. 3, No. 1, 1975, p. 24.
44. Landis, E. N., and Shah, S. P., “Frequency-Dependent Stress Wave Attenuation in Cement-Based Materials,” Journal of Engineering Mechanics, ASCE, V. 121, No. 6, 1995, pp. 737-743. doi: 10.1061/(ASCE)0733-9399(1995)121:6(737)
45. Owino, J. O., and Jacobs, L. J., “Attenuation Measurements in Cement-Based Materials Using Laser Ultrasonics,” Journal of Engineering Mechanics, ASCE, V. 125, No. 6, 1999, pp. 637-647. doi: 10.1061/(ASCE)0733-9399(1999)125:6(637)
46. Yu, H.; Lu, L.; and Qiao, P., “Localization and Size Quantification of Surface Crack of Concrete Based on Rayleigh Wave Attenuation Model,” Construction and Building Materials, V. 280, 2021, p. 122437. doi: 10.1016/j.conbuildmat.2021.122437
47. Sacht, H. M.; Rossignolo, J. A.; and Santos, W. N., “Avaliação da condutividade térmica de concretos leves com argila expandida,” Revista Matéria, V. 15, No. 1, p. 31-39, 2010. (in Portuguese)
48. Shah, S. F. A.; Naseer, A.; Shah, A. A.; and Ashraf, M., “Evaluation of Thermal and Structural Behavior of Concrete Containing Rubber Aggregate,” Arabian Journal for Science and Engineering, V. 39, No. 10, 2014, pp. 6919-6926. doi: 10.1007/s13369-014-1294-1
49. ABNT NBR 15823, “Requirements for Classification, Control and Acceptance of Fresh SCC,” Brazilian Association of Technical Standards, Rio de Janeiro, Brazil, 2017.
50. JIS A 1115 A 1138, “Method of Sampling Fresh Concrete,” Japanese Standards Association, Tokyo, Japan.
51. BS EN 12350-9, “Testing Fresh Concrete. Self-Compacting Concrete. V-Funnel Test,” British Standards Institute, London, UK.
52. ASTM C39/C39M, “Standard Test Method for Compressive Strength of Cylindrical Concrete Samples,” ASTM International, West Conshohocken, PA.
53. Lu, Y.; Ma, H.; and Li, Z., “Ultrasonic Monitoring of the Early-Age Hydration of Mineral Admixtures Incorporated Concrete Using Cement-Based Piezoelectric Composite Sensors,” Journal of Intelligent Material Systems and Structures, V. 26, No. 3, 2015, pp. 280-291. doi: 10.1177/1045389X14525488
54. Genovés, V.; Gosálbez, J.; Carrión, A.; Miralles, R.; and Payá, J., “Optimized Ultrasonic Attenuation Measures for Non-Homogeneous Materials,” Ultrasonics, V. 65, 2016, pp. 345-352. doi: 10.1016/j.ultras.2015.09.007
55. Gonçalves, R.; Trinca, A. J.; and dos Santos Ferreira, G. C. S. F., “Effect of Coupling Media on Velocity and Attenuation of Ultrasonic Waves in Brazilian Wood,” Journal of Wood Science, V. 57, No. 4, 2011, pp. 282-287. doi: 10.1007/s10086-011-1177-y
56. Asadollahi, A., and Khazanovich, L., “Numerical Investigation of the Effect of Heterogeneity on the Attenuation of Shear Waves in Concrete,” Ultrasonics, V. 91, 2019, pp. 34-44. doi: 10.1016/j.ultras.2018.07.011
57. Cosmes-López, M. F.; Castellanos, F.; and Cano-Barrita, P. F. J., “Ultrasound Frequency Analysis for Identification of Aggregates and Cement Paste in Concrete,” Ultrasonics, V. 73, 2017, pp. 88-95. doi: 10.1016/j.ultras.2016.08.016
58. Nogueira, C. L., “Wavelet-Based Analysis of Ultrasonic Longitudinal and Transverse Pulses in Cement-Based Materials,” Cement and Concrete Research, V. 41, No. 11, 2011, pp. 1185-1195. doi: 10.1016/j.cemconres.2011.07.008
59. Philippidis, T. P., and Aggelis, D. G., “Experimental Study of Wave Dispersion and Attenuation in Concrete,” Ultrasonics, V. 43, No. 7, 2005, pp. 584-595. doi: 10.1016/j.ultras.2004.12.001
60. ASTM E1225, “Standard Test Method for Thermal Conductivity of Solids Using the Guarded-Comparative-Longitudinal Heat Flow Technique,” ASTM International, West Conshohocken, PA.
61. Bing, C., and Ning, L., “Experimental Research on Properties of Fresh and Hardened Rubberized Concrete,” Journal of Materials in Civil Engineering, ASCE, V. 26, No. 8, 2014, p. 04014040. doi: 10.1061/(ASCE)MT.1943-5533.0000923
62. Yung, W. H.; Yung, L. C.; and Hua, L. H., “A Study of the Durability Properties of Waste Tire Rubber Applied to Self-Compacting Concrete,” Construction and Building Materials, V. 41, 2013, pp. 665-672. doi: 10.1016/j.conbuildmat.2012.11.019
63. Angelin, A. F.; Cecche Lintz, R. C.; Gachet-Barbosa, L. A.; and Osório, W. R., “The Effects of Porosity on Mechanical Behavior and Water Absorption of an Environmentally Friendly Cement Mortar with Recycled Rubber,” Construction and Building Materials, V. 151, Oct. 2017, pp. 534-545.
64. Shen, W.; Shan, L.; Zhang, T.; Ma, H.; Cai, Z.; and Shi, H., “Investigation on Polymer-Rubber Aggregate Modified Porous Concrete,” Construction and Building Materials, V. 38, 2013, pp. 667-674. doi: 10.1016/j.conbuildmat.2012.09.006
65. Herrera-Sosa, E. S.; Martínez-Barrera, G.; Barrera-Díaz, C.; Cruz-Zaragoza, E.; and Ureña-Núñez, F., “Recovery and Modification of Waste Tire Particles and Their Use as Reinforcements of Concrete,” International Journal of Polymer Science, V. 2015, No. 1, 2015, pp. 1-8. doi: 10.1155/2015/234690
66. da Silva, F. M.; Gachet Barbosa, L. A.; Lintz, R. C. C.; and Jacintho, A. E. P. G. A., “Investigation on the Properties of Concrete Tactile Paving Blocks Made with Recycled Tire Rubber,” Construction and Building Materials, V. 91, 2015, pp. 71-79. doi: 10.1016/j.conbuildmat.2015.05.027
67. Angelin, A. F.; Andrade, M. F. F.; Bonatti, R.; Cecche Lintz, R. C.; Gachet-Barbosa, L. A.; and Osório, W. R., “Effects of Spheroid and Fiber-Like Waste-Tire Rubbers on Interrelation of Strength-to-Porosity in Rubberized Cement and Mortars,” Construction and Building Materials, V. 95, 2015, pp. 525-536. doi: 10.1016/j.conbuildmat.2015.07.166
68. Gesoğlu, M., and Guneyisi, E., “Permeability Properties of Self-Compacting Rubberized Concretes,” Construction and Building Materials, V. 25, No. 8, 2011, pp. 3319-3326. doi: 10.1016/j.conbuildmat.2011.03.021
69. Karaiskos, G.; Deraemaeker, A.; Aggelis, D. G.; and Hemelrijck, D., “Monitoring of Concrete Structures Using the Ultrasonic Pulse Velocity Method,” Smart Materials and Structures, V. 24, No. 11, 2015, p. 113001. doi: 10.1088/0964-1726/24/11/113001
70. Whitehurst, E. A., “Evaluation of Concrete Properties from Sonic Tests,” ACI Monograph No. 2, American Concrete Institute, Farmington Hills, MI, 1966, 94 pp.
71. Jafari, K., and Toufigh, V., “Experimental and Analytical Evaluation of Rubberized Polymer Concrete,” Construction and Building Materials, V. 155, 2017, pp. 495-510. doi: 10.1016/j.conbuildmat.2017.08.097
72. Herrero, S.; Mayor, P.; and Hernandez-Olivares, F., “Influence of Proportion and Particle Size Gradation of Rubber from End-of-Life Tires on Mechanical, Thermal and Acoustic Properties of Plaster-Rubber Mortars,” Materials & Design, V. 47, 2013, pp. 633-642. doi: 10.1016/j.matdes.2012.12.06