Title:
Cementitious Composite Materials for Self-Sterilization Surfaces
Author(s):
Abdul Halim Hamdany, Yuanzhao Ding, and Shunzhi Qian
Publication:
Materials Journal
Volume:
119
Issue:
6
Appears on pages(s):
197-210
Keywords:
cementitious composites; Escherichia coli decomposition; self-sterilization surfaces; superhydrophilicity; titanium dioxide (TiO2)
DOI:
10.14359/51735983
Date:
11/1/2022
Abstract:
This paper studies the antibacterial activity of different TiO2 nanostructures (fine-particulate TiO2, TiO2-anatase, and TiO2-rutile) for self-sterilization applications. It is divided into three parts. The first part deals with the investigation of radical production by means of the p-nitrosodimethylaniline (RNO)-bleaching method. In the second part, the effect of incorporating TiO2 into a cement-based composite on its microstructure is evaluated. In the third part, the
antibacterial performance is assessed. The results demonstrated that fine-particulate TiO2 has the highest rate of hydroxyl radical production (2.5 times higher than that of TiO2-anatase) owing to its high specific surface area. TiO2 nanoparticles tend to agglomerate/aggregate during the mixing process, reducing the surface area available for the photocatalytic process. However, fine-particulate TiO2 agglomeration can be suppressed under strong alkaline conditions. A significant antibacterial effect was achieved
by the sample with fine-particulate TiO2. The percentage of the
infected area is less than 5% for the cement sample containing 5% of fine-particulate TiO2, while the control specimen has more than 15% of the infected area.
Related References:
Byrne, C.; Nolan, M.; Banerjee, S.; John, H.; Jose, S.; Periyat, P.; and Pillai, S. C., 2018, “Advances in the Development of Novel Photocatalysts for Detoxification,” Visible Light-Active Photocatalysis: Nanostructured Catalyst Design, Mechanisms, and Applications, S. Ghosh, ed., Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, pp. 283-327.
Carp, O.; Huisman, C. L.; and Reller, A., 2004, “Photoinduced Reactivity of Titanium Dioxide,” Progress in Solid State Chemistry, V. 32, No. 1-2, pp. 33-177. doi: 10.1016/j.progsolidstchem.2004.08.001
Carré, G.; Hamon, E.; Ennahar, S.; Estner, M.; Lett, M.-C.; Horvatovich, P.; Gies, J.-P.; Keller, V.; Keller, N.; and Andre, P., 2014, “TiO2 Photocatalysis Damages Lipids and Proteins in Escherichia coli,” Applied and Environmental Microbiology, V. 80, No. 8, Apr., pp. 2573-2581.
Cassar, L.; Beeldens, A.; Pimpinelli, N.; and Guerrini, G. L., 2007, “Photocatalysis of Cementitious Materials,” International RILEM Symposium on Photocatalysis, Environment and Construction Materials, P. Baglioni and L. Cassar, eds., Florence, Italy, pp. 131-145.
Cruz-Ortiz, B. R.; Hamilton, J. W. J.; Pablos, C.; Díaz-Jiménez, L.; Cortés-Hernández, D. A.; Sharma, P. K.; Castro-Alférez, M.; Fernández-Ibañez, P.; Dunlop, P. S. M.; and Byrne, J. A., 2017, “Mechanism of Photocatalytic Disinfection Using Titania-Graphene Composites under UV and Visible Irradiation,” Chemical Engineering Journal, V. 316, May, pp. 179-186. doi: 10.1016/j.cej.2017.01.094
Daly, M. J.; Gaidamakova, E. K.; Matrosova, V. Y.; Vasilenko, A.; Zhai, M.; Leapman, R. D.; Lai, B.; Ravel, B.; Li, S.-M. W.; Kemner, K. M.; and Fredrickson, J. K., 2007, “Protein Oxidation Implicated as the Primary Determinant of Bacterial Radioresistance,” PLoS Biology, V. 5, No. 4, Article No. e92. doi: 10.1371/journal.pbio.0050092
Davidson, H.; Poon, M.; Saunders, R.; Shapiro, I. M.; Hickok, N. J.; and Adams, C. S., 2015, “Tetracycline Tethered to Titanium Inhibits Colonization by Gram-Negative Bacteria,” Journal of Biomedical Materials Research Part B: Applied Biomaterials, V. 103, No. 7, Oct., pp. 1381-1389. doi: 10.1002/jbm.b.33310
Fonseca, A. J.; Pina, F.; Macedo, M. F.; Leal, N.; Romanowska-Deskins, A.; Laiz, L.; Gómez-Bolea, A.; and Saiz-Jimenez, C., 2010, “Anatase as an Alternative Application for Preventing Biodeterioration of Mortars: Evaluation and Comparison with Other Biocides,” International Biodeterioration & Biodegradation, V. 64, No. 5, Aug., pp. 388-396. doi: 10.1016/j.ibiod.2010.04.006
Fujishima, A., and Zhang, X., 2006, “Titanium Dioxide Photocatalysis: Present Situation and Future Approaches,” Comptes Rendus Chimie, V. 9, No. 5-6, May-June, pp. 750-760. doi: 10.1016/j.crci.2005.02.055
Fujishima, A.; Rao, T. N.; and Tryk, D. A., 2000, “Titanium Dioxide Photocatalysis,” Journal of Photochemistry and Photobiology C: Photochemistry Reviews, V. 1, No. 1, June, pp. 1-21. doi: 10.1016/S1389-5567(00)00002-2
Fujishima, A.; Zhang, X.; and Tryk, D. A., 2008, “TiO2 Photocatalysis and Related Surface Phenomena,” Surface Science Reports, V. 63, No. 12, Dec., pp. 515-582. doi: 10.1016/j.surfrep.2008.10.001
Giannantonio, D. J.; Kurth, J. C.; Kurtis, K. E.; and Sobecky, P. A., 2009, “Effects of Concrete Properties and Nutrients on Fungal Colonization and Fouling,” International Biodeterioration & Biodegradation, V. 63, No. 3, Apr., pp. 252-259. doi: 10.1016/j.ibiod.2008.10.002
Graziani, L.; Quagliarini, E.; Bondioli, F.; and D’Orazio, M., 2014, “Durability of Self-Cleaning TiO2 Coatings on Fired Clay Brick Façades: Effects of UV Exposure and Wet & Dry Cycles,” Building and Environment, V. 71, Jan., pp. 193-203. doi: 10.1016/j.buildenv.2013.10.005
Green Millennium, 2018, “Outdoor/Exterior Application: Photocatalytic Self-Cleaning Coating, Pollution Control,” Green Millennium, Pomona, CA, http://www.greenmillennium.com/outdoor-exterior/. (last accessed Oct. 27, 2022)
Gu, J.-D.; Ford, T. E.; Berke, N. S.; and Mitchell, R., 1998, “Biodeterioration of Concrete by the Fungus Fusarium,” International Biodeterioration & Biodegradation, V. 41, No. 2, pp. 101-109. doi: 10.1016/S0964-8305(98)00034-1
Guan, K., 2005, “Relationship between Photocatalytic Activity, Hydrophilicity and Self-Cleaning Effect of TiO2/SiO2 Films,” Surface and Coatings Technology, V. 191, No. 2-3, Feb., pp. 155-160. doi: 10.1016/j.surfcoat.2004.02.022
Guo, M.-Z.; Ling, T.-C.; and Poon, C.-S., 2012, “TiO2-Based Self-Compacting Glass Mortar: Comparison of Photocatalytic Nitrogen Oxide Removal and Bacteria Inactivation,” Building and Environment, V. 53, July, pp. 1-6. doi: 10.1016/j.buildenv.2011.12.022
Guo, M.-Z.; Ling, T.-C.; and Poon, C.-S., 2013, “Nano-TiO2-Based Architectural Mortar for NO Removal and Bacteria Inactivation: Influence of Coating and Weathering Conditions,” Cement and Concrete Composites, V. 36, Feb., pp. 101-108. doi: 10.1016/j.cemconcomp.2012.08.006
Guo, M.-Z.; Ling, T.-C.; and Poon, C. S., 2017, “Photocatalytic NOx Degradation of Concrete Surface Layers Intermixed and Spray-Coated with Nano-TiO2: Influence of Experimental Factors,” Cement and Concrete Composites, V. 83, Oct., pp. 279-289. doi: 10.1016/j.cemconcomp.2017.07.022
Guo, M.-Z.; Maury-Ramirez, A.; and Poon, C. S., 2016, “Self-Cleaning Ability of Titanium Dioxide Clear Paint Coated Architectural Mortar and Its Potential in Field Application,” Journal of Cleaner Production, V. 112, Part 4, Jan., pp. 3583-3588. doi: 10.1016/j.jclepro.2015.10.079
Gustafson, K. E., and Dickhut, R. M., 1997, “Particle/Gas Concentrations and Distributions of PAHs in the Atmosphere of Southern Chesapeake Bay,” Environmental Science & Technology, V. 31, No. 1, Jan., pp. 140-147. doi: 10.1021/es9602197
Hamdany, A. H.; Ding, Y.; and Qian, S., 2021, “Mechanical and Antibacterial Behavior of Photocatalytic Lightweight Engineered Cementitious Composites,” Journal of Materials in Civil Engineering, ASCE, V. 33, No. 10, p. 04021262. doi: 10.1061/(ASCE)MT.1943-5533.0003886
Hashimoto, K.; Irie, H.; and Fujishima, A., 2005, “TiO2 Photocatalysis: A Historical Overview and Future Prospects,” Japanese Journal of Applied Physics, V. 44, No. 12, pp. 8269-8285.
Hirakawa, T., and Nosaka, Y., 2002, “Properties of O2•– and OH• Formed in TiO2 Aqueous Suspensions by Photocatalytic Reaction and the Influence of H2O2 and Some Ions,” Langmuir, V. 18, No. 8, Apr., pp. 3247-3254. doi: 10.1021/la015685a
Hoffmann, M. R.; Martin, S. T.; Choi, W.; and Bahnemann, D. W., 1995, “Environmental Applications of Semiconductor Photocatalysis,” Chemical Reviews, V. 95, No. 1, Jan., pp. 69-96. doi: 10.1021/cr00033a004
Jiang, J.; Oberdörster, G.; and Biswas, P., 2009, “Characterization of Size, Surface Charge, and Agglomeration State of Nanoparticle Dispersions for Toxicological Studies,” Journal of Nanoparticle Research, V. 11, No. 1, Jan., pp. 77-89.
Jimenez-Relinque, E.; Llorente, I.; and Castellote, M., 2017, “TiO2 Cement-Based Materials: Understanding Optical Properties and Electronic Band Structure of Complex Matrices,” Catalysis Today, V. 287, June, pp. 203-209. doi: 10.1016/j.cattod.2016.11.015
Krishnan, P.; Zhang, M.-H.; Yu, L.; and Feng, H., 2013, “Photocatalytic Degradation of Particulate Pollutants and Self-Cleaning Performance of TiO2-Containing Silicate Coating and Mortar,” Construction and Building Materials, V. 44, July, pp. 309-316. doi: 10.1016/j.conbuildmat.2013.03.009
Kubacka, A.; Diez, M. S.; Rojo, D.; Bargiela, R.; Ciordia, S.; Zapico, I.; Albar, J. P.; Barbas, C.; Martins dos Santos, V. A. P.; Fernández-García, M.; and Ferrer, M., 2014, “Understanding the Antimicrobial Mechanism of TiO2-Based Nanocomposite Films in a Pathogenic Bacterium,” Scientific Reports, V. 4, No. 1, Article No. 4134. doi: 10.1038/srep04134
Linsebigler, A. L.; Lu, G.; and Yates, J. T. Jr., 1995, “Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results,” Chemical Reviews, V. 95, No. 3, May, pp. 735-758. doi: 10.1021/cr00035a013
Lorenzetti, M.; Dogša, I.; Stošicki, T.; Stopar, D.; Kalin, M.; Kobe, S.; and Novak, S., 2015, “The Influence of Surface Modification on Bacterial Adhesion to Titanium-Based Substrates,” ACS Applied Materials & Interfaces, V. 7, No. 3, Jan., pp. 1644-1651. doi: 10.1021/am507148n
Martinez, T.; Bertron, A.; Escadeillas, G.; and Ringot, E., 2014, “Algal Growth Inhibition on Cement Mortar: Efficiency of Water Repellent and Photocatalytic Treatments under UV/VIS Illumination,” International Biodeterioration & Biodegradation, V. 89, Apr., pp. 115-125. doi: 10.1016/j.ibiod.2014.01.018
Maury-Ramirez, A.; De Muynck, W.; Stevens, R.; Demeestere, K.; and De Belie, N., 2013, “Titanium Dioxide Based Strategies to Prevent Algal Fouling on Cementitious Materials,” Cement and Concrete Composites, V. 36, Feb., pp. 93-100. doi: 10.1016/j.cemconcomp.2012.08.030
Mills, A., and Le Hunte, S., 1997, “An Overview of Semiconductor Photocatalysis,” Journal of Photochemistry and Photobiology A: Chemistry, V. 108, No. 1, July, pp. 1-35. doi: 10.1016/S1010-6030(97)00118-4
Mills, A.; Hill, C.; and Robertson, P. K. J., 2012, “Overview of the Current ISO Tests for Photocatalytic Materials,” Journal of Photochemistry and Photobiology A: Chemistry, V. 237, June, pp. 7-23. doi: 10.1016/j.jphotochem.2012.02.024
Murata, Y.; Tawara, H.; Obata, H.; and Takeuchi, K., 1999, “Air Purifying Pavement: Development of Photocatalytic Concrete Blocks,” Journal of Advanced Oxidation Technologies, V. 4, pp. 227-230.
Nichols, G.; Byard, S.; Bloxham, M. J.; Botterill, J.; Dawson, N. J.; Dennis, A.; Diart, V.; North, N. C.; and Sherwood, J. D., 2002, “A Review of the Terms Agglomerate and Aggregate with a Recommendation for Nomenclature Used in Powder and Particle Characterization,” Journal of Pharmaceutical Sciences, V. 91, No. 10, Oct., pp. 2103-2109. doi: 10.1002/jps.10191
Pacheco-Torgal, F.; Miraldo, S.; Ding, Y.; and Labrincha, J. A., 2013, “Targeting HPC with the Help of Nanoparticles: An Overview,” Construction and Building Materials, V. 38, Jan., pp. 365-370. doi: 10.1016/j.conbuildmat.2012.08.013
Parker, C. D., 1945, “The Corrosion of Concrete: 1. The Isolation of a Species of Bacterium Associated with the Corrosion of Concrete Exposed to Atmospheres Containing Hydrogen Sulphide,” The Australian Journal of Experimental Biology and Medical Science, V. 23, No. 2, June, pp. 81-90. doi: 10.1038/icb.1945.13
Peng, Z.; Ni, J.; Zheng, K.; Shen, Y.; Wang, X.; He, G.; Jin, S.; and Tang, T., 2013, “Dual Effects and Mechanism of TiO2 Nanotube Arrays in Reducing Bacterial Colonization and Enhancing C3H10T1/2 Cell Adhesion,” International Journal of Nanomedicine, V. 8, pp. 3093-3105.
Pérez-Nicolás, M.; Balbuena, J.; Cruz-Yusta, M.; Sánchez, L.; Navarro-Blasco, I.; Fernández, J. M.; and Alvarez, J. I., 2015, “Photocatalytic NOx Abatement by Calcium Aluminate Cements Modified with TiO2: Improved NO2 Conversion,” Cement and Concrete Research, V. 70, Apr., pp. 67-76. doi: 10.1016/j.cemconres.2015.01.011
Podporska-Carroll, J.; Panaitescu, E.; Quilty, B.; Wang, L.; Menon, L.; and Pillai, S. C., 2015, “Antimicrobial Properties of Highly Efficient Photocatalytic TiO2 Nanotubes,” Applied Catalysis B: Environmental, V. 176-177, Oct., pp. 70-75.
Portland Cement Association, 2002, “Types and Causes of Concrete Deterioration,” PCA R&D Serial No. 2617, Portland Cement Association, Skokie, IL, pp. 1-16.
Ribeiro, E.; Mira, A. R.; Ponte, T.; and Oliveira, K., 2022, “Airborne Transmission of Bacteria Bioburden,” Viruses, Bacteria and Fungi in the Built Environment: Designing Healthy Indoor Environments, F. Pacheco-Torgal, V. Ivanov, and J. O. Falkinham, eds., Woodhead Publishing, Sawston, UK, pp. 127-145.
Ruot, B.; Plassais, A.; Olive, F.; Guillot, L.; and Bonafous, L., 2009, “TiO2-Containing Cement Pastes and Mortars: Measurements of the Photocatalytic Efficiency Using a Rhodamine B-Based Colourimetric Test,” Solar Energy, V. 83, No. 10, Oct., pp. 1794-1801. doi: 10.1016/j.solener.2009.05.017
Sikora, P.; Cendrowski, K.; Markowska-Szczupak, A.; Horszczaruk, E.; and Mijowska, E., 2017, “The Effects of Silica/Titania Nanocomposite on the Mechanical and Bactericidal Properties of Cement Mortars,” Construction and Building Materials, V. 150, Sept., pp. 738-746. doi: 10.1016/j.conbuildmat.2017.06.054
Simonsen, M. E.; Muff, J.; Bennedsen, L. R.; Kowalski, K. P.; and Søgaard, E. G., 2010, “Photocatalytic Bleaching of p-Nitrosodimethylaniline and a Comparison to the Performance of Other AOP Technologies,” Journal of Photochemistry and Photobiology A: Chemistry, V. 216, No. 2-3, Dec., pp. 244-249.
Singh, V. P.; Sandeep, K.; Kushwaha, H. S.; Powar, S.; and Vaish, R., 2018, “Photocatalytic, Hydrophobic and Antimicrobial Characteristics of ZnO Nano Needle Embedded Cement Composites,” Construction and Building Materials, V. 158, Jan., pp. 285-294. doi: 10.1016/j.conbuildmat.2017.10.035
Xiang, Q.; Yu, J.; and Wong, P. K., 2011, “Quantitative Characterization of Hydroxyl Radicals Produced by Various Photocatalysts,” Journal of Colloid and Interface Science, V. 357, No. 1, May, pp. 163-167. doi: 10.1016/j.jcis.2011.01.093
Xiao, Q., and Ouyang, L., 2009, “Photocatalytic Activity and Hydroxyl Radical Formation of Carbon-Doped TiO2 Nanocrystalline: Effect of Calcination Temperature,” Chemical Engineering Journal, V. 148, No. 2-3, May, pp. 248-253.
Yang, L.; Wang, F.; Shu, C.; Liu, P.; Zhang, W.; and Hu, S., 2017, “TiO2/Porous Cementitious Composites: Influences of Porosities and TiO2 Loading Levels on Photocatalytic Degradation of Gaseous Benzene,” Construction and Building Materials, V. 150, Sept., pp. 774-780. doi: 10.1016/j.conbuildmat.2017.06.004
Yousefi, A.; Allahverdi, A.; and Hejazi, P., 2013, “Effective Dispersion of Nano-TiO2 Powder for Enhancement of Photocatalytic Properties in Cement Mixes,” Construction and Building Materials, V. 41, Apr., pp. 224-230. doi: 10.1016/j.conbuildmat.2012.11.057
Zang, L.; Qu, P.; Zhao, J.; Shen, T.; and Hidaka, H., 1997, “Photocatalytic Bleaching of p-Nitrosodimethylaniline in TiO2 Aqueous Suspensions: A Kinetic Treatment Involving Some Primary Events Photoinduced on the Particle Surface,” Journal of Molecular Catalysis A: Chemical, V. 120, No. 1-3, June, pp. 235-245. doi: 10.1016/S1381-1169(96)00404-9
Zhang, Y., and Pan, C., 2011, “TiO2/Graphene Composite from Thermal Reaction of Graphene Oxide and Its Photocatalytic Activity in Visible Light,” Journal of Materials Science, V. 46, No. 8, Apr., pp. 2622-2626. doi: 10.1007/s10853-010-5116-x
Zhao, A.; Yang, J.; and Yang, E.-H., 2015, “Self-Cleaning Engineered Cementitious Composites,” Cement and Concrete Composites, V. 64, Nov., pp. 74-83.
Zhu, W.; Bartos, P. J. M.; and Porro, A., 2004, “Application of Nanotechnology in Construction,” Materials and Structures, V. 37, No. 9, Nov., pp. 649-658.
Zhu, X.; Li, X.; Wang, W.; and Ning, K., 2020, “Bacterial Contamination Screening and Interpretation for Biological Laboratory Environments,” Medicine in Microecology, V. 5, Sept., Article No. 100021. doi: 10.1016/j.medmic.2020.100021
Zouzelka, R., and Rathousky, J., 2017, “Photocatalytic Abatement of NOx Pollutants in the Air Using Commercial Functional Coating with Porous Morphology,” Applied Catalysis B: Environmental, V. 217, Nov., pp. 466-476.