Laboratory Compaction Method for Dry-Consistency Concretes

International Concrete Abstracts Portal

The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

  


Title: Laboratory Compaction Method for Dry-Consistency Concretes

Author(s): Danilo A. Niza, Caroline P. Sales, Marco Quattrone, Rafael G. Pileggi, and Sérgio C. Angulo

Publication: Materials Journal

Volume: 119

Issue: 5

Appears on pages(s): 77-88

Keywords: dry-consistency concretes; gap-graded particle-size distribution; laboratory compaction method

DOI: 10.14359/51735974

Date: 9/1/2022

Abstract:
Vibro-pressed concrete blocks have been used owing to their various advantages such as high productivity, precise dimensional control of products, and low waste production. As density and compressive strength of new components are obtained by compaction using hydraulic vibro-presses, the quality control is usually carried out at factory scale. The reproduction of the industrial compaction pressure in a laboratory scale test is a challenge of research. In this paper, a laboratory-confined uniaxial compressive method was implemented to evaluate the compaction behavior of dryconsistency concrete mixtures in similar hydraulic compaction pressures. An increase in the compaction energy was found to be correlated with the reduction of interparticle voids, as well as with the increase of density and compressive strength of concrete specimens, which proves the method applicability. Relaxation in concrete mixtures decreased with voids reduction; after compaction, the recovered elastic energy increased with the compaction energy, showing the benefits of the method. Gap-graded particle-size distribution mixtures reduced interparticle voids, achieving a target density of concrete mixtures with low water demand, an environmental benefit for concrete.

Related References:

1. Hüsken, G., “A Multifunctional Design Approach for Sustainable Concrete: With Application to Concrete Mass Products,” PhD thesis, Technische Universiteit Eindhoven, Eindhoven, the Netherlands, 2010, 261 pp.

2. Marchand, J.; Hornain, H.; Diamond, S.; Pigeon, M.; and Guiraud, H., “The Microstructure of Dry Concrete Products,” Cement and Concrete Research, V. 26, No. 3, 1996, pp. 427-438. doi: 10.1016/S0008-8846(96)85030-7

3. Kuch, H.; Schwabe, J.-H.; and Palzer, U., Manufacturing of Concrete Products and Precast Elements, Verlag Bau+Technik GmbH, Düsseldorf, Germany, 2010, 274 pp.

4. Hüsken, G., and Brouwers, H. J. H., “A New Mix Design Concept for Earth-Moist Concrete: A Theoretical and Experimental Study,” Cement and Concrete Research, V. 38, No. 10, 2008, pp. 1246-1259. doi: 10.1016/j.cemconres.2008.04.002

5. Pivinskii, Y. E., “Refractory Concretes of a New Generation. Vibrorheology. Vibration Methods of Compacting and Forming,” Refractories and Industrial Ceramics, V. 35, No. 7, 1994, pp. 211-220. doi: 10.1007/BF02310375

6. Popovics, S., “A Review of the Concrete Consolidation by Vibration,” Matériaux et Constructions, V. 6, No. 6, 1973, pp. 453-463. doi: 10.1007/BF02473784

7. ACI Committee 309, “Report on Behavior of Fresh Concrete During Vibration (ACI 309.1R-08),” American Concrete Institute, Farmington Hills, MI, 2008, 18 pp.

8. Strömberg, T.; Dahlin, L. B.; and Lundborg, G., “Hand Problems in 100 Vibration-Exposed Symptomatic Male Workers,” The Journal of Hand Surgery, V. 21, No. 3, 1996, pp. 315-319. doi: 10.1016/S0266-7681(05)80192-5

9. Lundborg, G., “Pain, Nerve Dysfunction and Fatigue in a Vibration-Exposed Population,” Quality of Life Research, V. 3, No. S1, 1994, pp. S39-S42. doi: 10.1007/BF00433375

10. Banfill, P. F. G., “Rheology of Fresh Cement and Concrete,” Rheology Reviews, V. 2006, 2006, pp. 61-130.

11. Riedel, R., and Chen, I.-W., eds., Ceramics Science and Technology, Wiley-VCH Verlag GmbH, Weinheim, Germany, 2008.

12. Hüsken, G., and Brouwers, H. J. H., “On the Early-Age Behavior of Zero-Slump Concrete,” Cement and Concrete Research, V. 42, No. 3, 2012, pp. 501-510. doi: 10.1016/j.cemconres.2011.11.007

13. Soutsos, M. N.; Tang, K.; and Millard, S. G., “Concrete Building Blocks Made with Recycled Demolition Aggregate,” Construction and Building Materials, V. 25, No. 2, 2011, pp. 726-735. doi: 10.1016/j.conbuildmat.2010.07.014

14. Mehta, P. K., and Monteiro, P. J. M., Concrete: Microstructure, Properties, and Materials, third edition, McGraw-Hill, New York, 2006, 684 pp.

15. Delalonde, M.; Baylac, G.; Bataille, B.; Jacob, M.; and Puech, A., “The Rheology of Wet Powders: A Measuring Instrument, the Compresso-Rheometer,” International Journal of Pharmaceutics, V. 130, No. 1, 1996, pp. 147-151. doi: 10.1016/0378-5173(96)84754-5

16. Stasiak, M.; Tomas, J.; Molenda, M.; Rusinek, R.; and Mueller, P., “Uniaxial Compaction Behaviour and Elasticity of Cohesive Powders,” Powder Technology, V. 203, No. 3, 2010, pp. 482-488. doi: 10.1016/j.powtec.2010.06.010

17. Neville, A. M., Properties of Concrete, fifth edition, Pearson Education Limited, London, UK, 2011, 983 pp.

18. Koehler, E. P., and Fowler, D. W., “Summary of Concrete Workability Test Methods,” Report No. ICAR 105-1, International Center for Aggregates Research, Austin, TX, 2003, 93 pp.

19. Bartos, P. J. M., Special Concretes—Workability and Mixing, Spon Press, London, UK, 1993.

20. Zvonarić, M.; Barišić, I.; Galić, M.; and Minažek, K., “Influence of Laboratory Compaction Method on Compaction and Strength Characteristics of Unbound and Cement-Bound Mixtures,” Applied Sciences (Basel), V. 11, No. 11, 2021, Article No. 4750. doi: 10.3390/app11114750

21. Ritchie, A. G. B., “The Triaxial Testing of Fresh Concrete,” Magazine of Concrete Research, V. 14, No. 40, 1962, pp. 37-42. doi: 10.1680/macr.1962.14.40.37

22. Poon, C. S.; Kou, S. C.; and Lam, L., “Use of Recycled Aggregates in Molded Concrete Bricks and Blocks,” Construction and Building Materials, V. 16, No. 5, 2002, pp. 281-289. doi: 10.1016/S0950-0618(02)00019-3

23. Prudêncio, L. R. Jr.; de Oliveira, A. L.; and Frasson, A. Jr., “Parte 2: Metodologia de Dosagem para Blocos de Concreto Empregados em Alvenaria Estrutural,” Revista Prisma - Caderno Técnico Alvenaria Estrutural - CT 11, 2010, pp. 33-39.

24. de Oliveira, A. L., “Contribuição a Dosagem e Produção de Peças de Concreto para Pavimentação,” PhD thesis, Universidade Federal de Santa Catarina, Florianópolis, Brazil, 2004, 296 pp.

25. Felipe, A. S., “Contribuição para a Otimização de Traços de Concreto Utilizados na Produção de Blocos Estruturais,” Master’s thesis, Universidade Estadual Paulista, Ilha Solteira, Brazil, 2010, 160 pp.

26. Niza, D. A., “Concretos Secos com Agregados de RCD: A Influência da Otimização Granulométrica e Efeitos na Compactação,” master’s thesis, Universidade de São Paulo, São Paulo, Brazil, 2021, 100 pp.

27. Marchioni, M. L., “Desenvolvimento de Técnicas para Caracterização de Concreto Seco Utilizado na Fabricação de Peças de Concreto para Pavimentação Intertravada,” master’s dissertation, Universidade de São Paulo, São Paulo, Brazil, 2012, 112 pp.

28. Marchioni, M. L.; Lyra, J.; Pileggi, R. G.; and Oliveira, C., “Compaction Test Method for Dry Concrete,” 10th International Conference on Concrete Block Paving, Shanghai, China, 2012, 14 pp.

29. Brujić, J.; Wang, P.; Song, C.; Johnson, D. L.; Sindt, O.; and Makse, H. A., “Granular Dynamics in Compaction and Stress Relaxation,” Physical Review Letters, V. 95, No. 12, 2005, p. 128001. doi: 10.1103/PhysRevLett.95.128001

30. Moreyra, R., and Yeleg, M., “Compressive Deformation Patterns of Selected Food Powders,” Journal of Food Science, V. 45, No. 4, 1980, pp. 866-868. doi: 10.1111/j.1365-2621.1980.tb07467.x

31. Fernandes, I., Blocos e Pavers: Produção e Controle de Qualidade, third edition, Editora Treino, São Paulo, Brazil, 2012, 182 pp.

32. Terpstra, R. A.; Pex, P. P. A. C.; and de Vries, A. H., eds., Ceramic Processing, Springer-Science+Business Media, Dordrecht, the Netherlands, 1995.

33. Chu, S. H.; Poon, C. S.; Lam, C. S.; and Li, L., “Effect of Natural and Recycled Aggregate Packing on Properties of Concrete Blocks,” Construction and Building Materials, V. 278, 2021, Article No. 122247. doi: 10.1016/j.conbuildmat.2021.122247

34. Wong, H. H. C., and Kwan, A. K. H., “Packing Density: A Key Concept for Mix Design of High Performance Concrete,” 2005, 15 pp.

35. de Larrard, F., Concrete Mixture Proportioning: A Scientific Approach, E&FN Spon, London, UK, 1999, 421 pp.

36. de Oliveira, I. R.; Studart, A. R.; Pileggi, R. G.; and Pandolfelli, V. C., Dispersão e Empacotamento de Partículas - Princípios e Aplicações em Processamento Cerâmico, first edition, Fazendo Arte Editorial, São Paulo, Brazil, 2000, 224 pp.

37. Abdullah, E. C., and Geldart, D., “The Use of Bulk Density Measurements as Flowability Indicators,” Powder Technology, V. 102, No. 2, 1999, pp. 151-165. doi: 10.1016/S0032-5910(98)00208-3

38. Zhang, T.; Yu, Q.; Wei, J.; and Zhang, P., “A New Gap-Graded Particle Size Distribution and Resulting Consequences on Properties of Blended Cement,” Cement and Concrete Composites, V. 33, No. 5, 2011, pp. 543-550. doi: 10.1016/j.cemconcomp.2011.02.013

39. Damineli, B. L., “Conceitos para Formulação de Concretos com Baixo Consumo de Ligantes: Controle Reológico, Empacotamento e Dispersão de Partículas,” doctoral thesis, Universidade de São Paulo, São Paulo, Brazil, 2013, 265 pp.

40. Kwan, A. K. H., and Li, L. G., “Combined Effects of Water Film, Paste Film and Mortar Film Thicknesses on Fresh Properties of Concrete,” Construction and Building Materials, V. 50, 2014, pp. 598-608. doi: 10.1016/j.conbuildmat.2013.10.014

41. Sanetra, S., “Particle Characterisation in Geological Applications,” Akademie für Geowissenschaften und Geotechnologien e.V., 2011, pp. 223-229.

42. List, J.; Köhler, U.; and Witt, W., “Dynamic Image Analysis Extended to Fine and Coarse Particles,” Particulate Systems Analysis 2011, Edinburgh, UK, 2011, 5 pp.

43. Hawlitschek, G.; Ulsen, C.; Kahn, H.; Masini, E. A.; and Tocchini, M., “Análise de Imagens Dinâmica - Caracterização da Distribuição de Tamanho e Forma de Partículas,” Holos, V. 3, 2015, pp. 22-29. doi: 10.15628/holos.2015.1781

44. Jablonski, N., “Mix Designs for Concrete Block,” 1996, 4 pp.

45. ABNT NBR NM 52:2009, “Fine Aggregate – Determination of the Bulk Specific Gravity and Apparent Specific Gravity,” Associação Brasileira de Normas Técnicas, São Paulo, Brazil, 2009, 10 pp.

46. ABNT NBR NM 53:2009, “Coarse Aggregate – Determination of the Bulk Specific Gravity, Apparent Specific Gravity and Water Absorption,” Associação Brasileira de Normas Técnicas, São Paulo, Brazil, 2009, 8 pp.

47. ABNT NBR NM 30:2001, “Fine Aggregate – Test Method for Water Absorption,” Associação Brasileira de Normas Técnicas, São Paulo, Brazil, 2001, 3 pp.

48. ASTM C127-12, “Standard Test Method for Density, Relative Density (Specific Gravity), and Absorption of Coarse Aggregate,” ASTM International, West Conshohocken, PA, 2012, 6 pp.

49. ASTM C128-15, “Standard Test Method for Relative Density (Specific Gravity) and Absorption of Fine Aggregate,” ASTM International, West Conshohocken, PA, 2015, 6 pp.

50. Webb, P. A., “Volume and Density Determinations for Particle Technologists,” Micromeritics Instruments Corporation, Norcross, GA, 2001, 16 pp.

51. ABNT NBR 5739:2007, “Concrete – Compression Test of Cylindric Specimens – Method of Test,” Associação Brasileira de Normas Técnicas, São Paulo, Brazil, 2007, 13 pp.

52. Powers, T. C., “Structure and Physical Properties of Hardened Portland Cement Paste,” Journal of the American Ceramic Society, V. 41, No. 1, 1958, pp. 1-6. doi: 10.1111/j.1151-2916.1958.tb13494.x

53. Powers, T. C., and Brownyard, T. L., “Studies of the Physical Properties of Hardened Portland Cement Paste: Part 2. Studies of Water Fixation,” ACI Journal Proceedings, V. 43, No. 9, Nov. 1946, pp. 249-336.

54. Pagliosa, C., “Determinação Experimental de Propriedades Viscoelásticas de Material Polimérico,” master’s thesis, Universidade Federal de Santa Catarina, Florianópolis, Brazil, 2004, 110 pp.

55. Peleg, M., and Moreyra, R., “Effect of Moisture on the Stress Relaxation Pattern of Compacted Powders,” Powder Technology, V. 23, No. 2, 1979, pp. 277-279. doi: 10.1016/0032-5910(79)87018-7

56. Kendall, K., “Macro Defect Free (MDF) Cements,” European Journal of Engineering Education, V. 12, No. 1, 1987, pp. 21-25. doi: 10.1080/03043798708939333


ALSO AVAILABLE IN:

Electronic Materials Journal



  

Edit Module Settings to define Page Content Reviewer