Shrinkage of Alkali-Activated Combined Slag and Fly Ash Concrete Cured at Ambient Temperature

International Concrete Abstracts Portal

The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

  


Title: Shrinkage of Alkali-Activated Combined Slag and Fly Ash Concrete Cured at Ambient Temperature

Author(s): Alexandre Rodrigue, Benoit Bissonnette, Josée Duchesne, and Benoit Fournier

Publication: Materials Journal

Volume: 119

Issue: 3

Appears on pages(s): 15-23

Keywords: alkali-activated materials; durability; fly ash; shrinkage; slag

DOI: 10.14359/51734615

Date: 5/1/2022

Abstract:
In alkali-activated slag/fly ash systems, autogenous shrinkage represents the dominant type of shrinkage. Increasing contents of added water and fly ash contents both reduce the importance of autogenous shrinkage. For a constant added water content (AW/B = 0.14), increasing the fly ash content from 20 to 40% resulted in an autogenous shrinkage reduction on paste specimens (from 5644 to 2168 μm/m at 28 days). The autogenous shrinkage of control ordinary portland cement (OPC) paste (water-cement ratio [w/cm] of 0.50) reached 505 μm/m. Alkali-activated slag/fly ash mixtures of this study had average pore radius values ranging between 3.40 and 3.55 nm, compared to 8.25 nm for the OPC paste control specimen. Smaller pores and high sodium concentrations result in higher internal pressure during the process of self-desiccation and could be the main causes for the very high autogenous shrinkage values recorded.

Related References:

1. McLellan, B. C.; Williams, R. P.; Lay, J.; van Riessen, A.; and Corder, G. D., “Costs and Carbon Emissions for Geopolymer Pastes in Comparison to Ordinary Portland Cement,” Journal of Cleaner Production, V. 19, No. 9-10, 2011, pp. 1080-1090. doi: 10.1016/j.jclepro.2011.02.010

2. Bernal, S. A.; Mejía De Gutiérrez, R.; Pedraza, A. L.; Provis, J. L.; Rodriguez, E. D.; and Delvasto, S., “Effect of Binder Content on the Performance of Alkali-Activated Slag Concretes,” Cement and Concrete Research, V. 41, No. 1, 2011, pp. 1-8. doi: 10.1016/j.cemconres.2010.08.017

3. Bernal, S. A.; Mejía De Gutiérrez, R.; and Provis, J. L., “Engineering and Durability Properties of Concretes Based on Alkali-Activated Granulated Blast Furnace Slag/Metakaolin Blends,” Construction and Building Materials, V. 33, 2012, pp. 99-108. doi: 10.1016/j.conbuildmat.2012.01.017

4. Häkkinen, T., “The Influence of Slag Content on the Microstructure, Permeability and Mechanical Properties of Concrete Part 1: Microstructural Studies and Basic Mechanical Properties,” Cement and Concrete Research, V. 23, No. 2, 1993, pp. 407-421. doi: 10.1016/0008-8846(93)90106-J

5. Fang, G.; Ho, W. K.; Tu, W.; and Zhang, M., “Workability and Mechanical Properties of Alkali-Activated Fly Ash-Slag Concrete Cured at Ambient Temperature,” Construction and Building Materials, V. 172, 2018, pp. 476-487. doi: 10.1016/j.conbuildmat.2018.04.008

6. Ma, Y., and Ye, G., “The Shrinkage of Alkali Activated Fly Ash,” Cement and Concrete Research, V. 68, 2015, pp. 75-82. doi: 10.1016/j.cemconres.2014.10.024

7. Collins, F., and Sanjayan, J. G., “Strength and Shrinkage Properties of Alkali-Activated Slag Concrete Placed Into a Large Column,” Cement and Concrete Research, V. 29, No. 5, 1999, pp. 659-666. doi: 10.1016/S0008-8846(99)00011-3

8. Deb, P. S.; Nath, P.; and Sarker, P. K., “Drying Shrinkage of Slag Blended Fly Ash Geopolymer Concrete Cured at Room Temperature,” Procedia Engineering, V. 125, 2015, pp. 594-600. doi: 10.1016/j.proeng.2015.11.066

9. Hojati, M., and Radlińska, A., “Shrinkage and Strength Development of Alkali-Activated Fly Ash-Slag Binary Cements,” Construction and Building Materials, V. 150, 2017, pp. 808-816. doi: 10.1016/j.conbuildmat.2017.06.040

10. Rodrigue, A.; Duchesne, J.; Fournier, B.; and Bissonnette, B., “Influence of Added Water and Fly Ash Content on the Characteristics, Properties and Early-Age Cracking Sensitivity of Alkali-Activated Slag/Fly Ash Concrete Cured at Ambient Temperature,” Construction and Building Materials, V. 171, 2018, pp. 929-941. doi: 10.1016/j.conbuildmat.2018.03.176

11. Fang, G.; Bahrami, H.; and Zhang, M., “Mechanisms of Autogenous Shrinkage of Alkali-Activated Fly Ash-Slag Pastes Cured at Ambient Temperature within 24 h,” Construction and Building Materials, V. 171, 2018, pp. 377-387. doi: 10.1016/j.conbuildmat.2018.03.155

12. Lee, N. K.; Jang, J. G.; and Lee, H. K., “Shrinkage Characteristics of Alkali-Activated Fly Ash/Slag Paste and Mortar at Early Ages,” Cement and Concrete Composites, V. 53, 2014, pp. 239-248. doi: 10.1016/j.cemconcomp.2014.07.007

13. Gao, X.; Yu, Q. L.; and Brouwers, H. J. H., “Assessing the Porosity and Shrinkage of Alkali Activated Slag-Fly Ash Composites Designed Applying a Packing Model,” Construction and Building Materials, V. 119, 2016, pp. 175-184. doi: 10.1016/j.conbuildmat.2016.05.026

14. Melo Neto, A. A.; Cincotto, M. A.; and Repette, W., “Drying and Autogenous Shrinkage of Pastes and Mortars with Activated Slag Cement,” Cement and Concrete Research, V. 38, No. 4, 2008, pp. 565-574. doi: 10.1016/j.cemconres.2007.11.002

15. Richardson, I. G.; Brough, A. R.; Groves, G. W.; and Dobson, C. M., “The Characterization of Hardened Alkali-Activated Blast-Furnace Slag Pastes and the Nature of the Calcium Silicate Hydrate (C-S-H) Phase,” Cement and Concrete Research, V. 24, No. 5, 1994, pp. 813-829. doi: 10.1016/0008-8846(94)90002-7

16. Myers, R. J.; Bernal, S. A.; San Nicolas, R.; and Provis, J. L., “Generalized Structural Description of Calcium-Sodium Aluminosilicate Hydrate Gels: The Cross-Linked Substituted Tobermorite Model,” Langmuir, V. 29, No. 17, 2013, pp. 5294-5306. doi: 10.1021/la4000473

17. Puertas, F.; Palacios, M.; Manzano, H.; Dolado, J. S.; Rico, A.; and Rodríguez, J., “A Model for the C-A-S-H Gel Formed in Alkali-Activated Slag Cements,” Journal of the European Ceramic Society, V. 31, No. 12, 2011, pp. 2043-2056. doi: 10.1016/j.jeurceramsoc.2011.04.036

18. Duxson, P.; Fernández-Jiménez, A.; Provis, J. L.; Lukey, G. C.; Palomo, A.; and van Deventer, J. S. J., “Geopolymer Technology: The Current State of the Art,” Journal of Materials Science, V. 42, No. 9, 2007, pp. 2917-2933. doi: 10.1007/s10853-006-0637-z

19. Palomo, A.; Grutzeck, M. W.; and Blanco, M. T., “Alkali-Activated Fly Ashes: A Cement for the Future,” Cement and Concrete Research, V. 29, No. 8, 1999, pp. 1323-1329. doi: 10.1016/S0008-8846(98)00243-9

20. Ismail, I.; Bernal, S. A.; Provis, J. L.; San Nicolas, R.; Hamdan, S.; and van Deventer, J. S. J., “Modification of Phase Evolution in Alkali-

Activated Blast Furnace Slag by the Incorporation of Fly Ash,” Cement and Concrete Composites, V. 45, 2014, pp. 125-135. doi: 10.1016/j.cemconcomp.2013.09.006

21. Garcia-Lodeiro, I.; Palomo, A.; Fernández-Jiménez, A.; and MacPhee, D. E., “Compatibility Studies between N-A-S-H and C-A-S-H Gels. Study in the Ternary Diagram Na2O-CaO-Al2O3-SiO2-H2O,” Cement and Concrete Research, V. 41, No. 9, 2011, pp. 923-931. doi: 10.1016/j.cemconres.2011.05.006

22. Garcia-Lodeiro, I.; Fernández-Jimenez, A.; and Palomo, A., “Cements with a Low Clinker Content: Versatile Use of Raw Materials,” Journal of Sustainable Cement-Based Materials, V. 4, No. 2, 2015, pp. 140-151. doi: 10.1080/21650373.2015.1040865

23. Provis, J. L.; Myers, R. J.; White, C. E.; Rose, V.; and van Deventer, J. S. J., “X-ray Microtomography Shows Pore Structure and Tortuosity in Alkali-Activated Binders,” Cement and Concrete Research, V. 42, No. 6, 2012, pp. 855-864. doi: 10.1016/j.cemconres.2012.03.004

24. Bernal, S. A.; Provis, J. L.; Walkley, B.; San Nicolas, R.; Gehman, J. D.; Brice, D. G.; Kilcullen, A. R.; Duxson, P.; and van Deventer, J. S. J., “Gel Nanostructure in Alkali-Activated Binders Based on Slag and Fly Ash, and Effects of Accelerated Carbonation,” Cement and Concrete Research, V. 53, 2013, pp. 127-144. doi: 10.1016/j.cemconres.2013.06.007

25. Lura, P.; Jensen, O. M.; and van Breugel, K., “Autogenous Shrinkage in High-Performance Cement Paste: An Evaluation of Basic Mechanisms,” Cement and Concrete Research, V. 33, No. 2, 2003, pp. 223-232. doi: 10.1016/S0008-8846(02)00890-6

26. Ballekere Kumarappa, D.; Peethamparan, S.; and Ngami, M., “Autogenous Shrinkage of Alkali Activated Slag Mortars: Basic Mechanisms and Mitigation Methods,” Cement and Concrete Research, V. 109, 2018, pp. 1-9. doi: 10.1016/j.cemconres.2018.04.004

27. Atiş, C. D.; Bilim, C.; Çelik, Ö.; and Karahan, O., “Influence of Activator on the Strength and Drying Shrinkage Of Alkali-Activated Slag Mortar,” Construction and Building Materials, V. 23, No. 1, 2009, pp. 548-555. doi: 10.1016/j.conbuildmat.2007.10.011

28. Yao, X.; Yang, T.; and Zhang, Z., “Compressive Strength Development and Shrinkage of Alkali-Activated Fly Ash–Slag Blends Associated with Efflorescence,” Materials and Structures, V. 49, No. 7, 2016, pp. 2907-2918. doi: 10.1617/s11527-015-0694-3

29. Lea, F. M., The Chemistry of Cement and Concrete, third edition, Chemical Publishing Co., New York, 1971, 740 pp.

30. Ye, H., and Radlińska, A., “Fly Ash-Slag Interaction during Alkaline Activation: Influence of Activators on Phase Assemblage and Microstructure Formation,” Construction and Building Materials, V. 122, 2016, pp. 594-606. doi: 10.1016/j.conbuildmat.2016.06.099

31. Criado, M.; Palomo, A.; and Fernández-Jiménez, A., “Alkali Activation of Fly Ashes. Part 1: Effect of Curing Conditions on the Carbonation of the Reaction Products,” Fuel, V. 84, No. 16, 2005, pp. 2048-2054. doi: 10.1016/j.fuel.2005.03.030

32. Provis, J. L., and van Deventer, J. S. J., eds., Alkali Activated Materials: State-of-the-Art Report, RILEM TC 224-AAM, Springer, Dordrecht, the Netherlands, 2014, 396 pp.


ALSO AVAILABLE IN:

Electronic Materials Journal



  

Edit Module Settings to define Page Content Reviewer