Title:
Properties of Sugarcane Bagasse Ash Concrete Modified with Bacterial Treatment
Author(s):
Mohammed Seddik Meddah, Praveenkumar Thaloor Ramesh, and Manigandan Sekar
Publication:
Materials Journal
Volume:
119
Issue:
3
Appears on pages(s):
187-196
Keywords:
B. megaterium; bacteria; calcite precipitation; chloride permeability; nuclear magnetic resonance (NMR) spectroscopy analysis; porosity; S. pasteurii; strengths; sugarcane bagasse ash (SCBA)
DOI:
10.14359/51734613
Date:
5/1/2022
Abstract:
Bacteria-prompted calcite precipitation enhances concrete strength properties and durability performance by creating nuclei crystals in the concrete pore structure. In this paper, the effect of bacterially treated sugarcane bagasse ash (SCBA)-based concrete on concrete’s mechanical and permeability properties has been comprehensively investigated. The SCBA was used in concrete as a partial replacement of normal portland cement at two different replacement levels of 10 and 20%, while bacteria content was kept constant at 105 cells/mL (2.96 × 106 cells/oz.). This study used two different types of bacteria, Sporosarcina pasteurii and Bacillus megaterium from the Bacillus subtilis family. After 28 days of curing in water, the blended cement concrete with 10% SCBA showed higher compressive strength compared to the control mixture. Incorporating B. megaterium and S. pasteurii further improved the compressive strength of concrete by 7 and 10% in SCBA 10% concrete. This compressive strength enhancement is due to the continuous hydration process of cement and the pozzolanic reaction of SCBA in concrete. The addition of bacteria further improves the strength by forming calcite crystals and filling the pore spaces in the concrete. Calcite deposition in the pores of concrete subsequently refines and enhances the microstructure of concrete. The deposition of calcite precipitation in the pores blocks the water permeability, which ultimately reduces the porosity and water absorption of bacteria-incorporated concrete. The incorporation of bacteria in concrete also reduces the penetration of chloride ions compared with the control mixture and the concrete treated with only SCBA. Based on the nuclear magnetic resonance (NMR) spectroscopy analysis, the average chain length of calcium-silicate-hydrate (C-S-H) gel was increased by incorporating SCBA in concrete up to a replacement level of 10%. Further addition of bacteria increases the chain length of C-S-H gel and the degree of cement hydration in concrete.
Related References:
1. U.S. Geological Survey, “Mineral Commodity Summaries,” Reston, VA, Jan. 2020, pp. 42-43.
2. Gartner, E. M., and Macphee, D. E., “A Physico-Chemical Basis for Novel Cementitious Binders,” Cement and Concrete Research, V. 41, No. 7, 2011, pp. 736-749. doi: 10.1016/j.cemconres.2011.03.006
3. Mehta, P. K., and Monteiro, P. J. M., Concrete: Microstructure, Properties, and Materials, fourth edition, McGraw-Hill Education, New York, 2014.
4. Chindaprasirt, P.; Jaturapitakkul, C.; and Sinsiri, T., “Effect of Fly Ash Fineness on Microstructure of Blended Cement Paste,” Construction and Building Materials, V. 21, No. 7, 2007, pp. 1534-1541. doi: 10.1016/j.conbuildmat.2005.12.024
5. Praveenkumar, T. R.; Vijayalakshmi, M. M.; and Meddah, M. S., “Strengths and Durability Performances of Blended Cement Concrete with TiO2 Nanoparticles and Rice Husk Ash,” Construction and Building Materials, V. 217, 2019, pp. 343-351. doi: 10.1016/j.conbuildmat.2019.05.045
6. Meddah, M. S., “Durability Performance and Engineering Properties of Shale and Volcanic Ashes Concretes,” Construction and Building Materials, V. 79, 2015, pp. 73-82. doi: 10.1016/j.conbuildmat.2015.01.020
7. Cordeiro, G. C.; Toledo Filho, R. D.; and Fairbairn, E. M. R., “Effect of Calcination Temperature on the Pozzolanic Activity of Sugar Cane Bagasse Ash,” Construction and Building Materials, V. 23, No. 10, 2009, pp. 3301-3303. doi: 10.1016/j.conbuildmat.2009.02.013
8. Cordeiro, G. C.; Toledo Filho, R. D.; Tavares, L. M.; Fairbairn, E. M. R.; and Hempel, S., “Influence of Particle Size and Specific Surface Area on the Pozzolanic Activity of Residual Rice Husk Ash,” Cement and Concrete Composites, V. 33, No. 5, 2011, pp. 529-534. doi: 10.1016/j.cemconcomp.2011.02.005
9. Cordeiro, G. C.; Toledo Filho, R. D.; Tavares, L. M.; and Fairbairn, E. M. R., “Ultrafine Grinding of Sugar Cane Bagasse Ash for Application as Pozzolanic Admixture in Concrete,” Cement and Concrete Research, V. 39, No. 2, 2009, pp. 110-115. doi: 10.1016/j.cemconres.2008.11.005
10. Chusilp, N.; Jaturapitakkul, C.; and Kiattikomol, K., “Utilization of Bagasse Ash as a Pozzolanic Material in Concrete,” Construction and Building Materials, V. 23, No. 11, 2009, pp. 3352-3358. doi: 10.1016/j.conbuildmat.2009.06.030
11. Somna, R.; Jaturapitakkul, C.; Rattanachu, P.; and Chalee, W., “Effect of Ground Bagasse Ash on Mechanical and Durability Properties of Recycled Aggregate Concrete,” Materials & Design, V. 36, 2012, pp. 597-603. doi: 10.1016/j.matdes.2011.11.065
12. Luo, M.; Qian, C.-X.; and Li, R.-Y., “Factors Affecting Crack-Repairing Capacity of Bacteria-Based Self-Healing Concrete,” Construction and Building Materials, V. 87, 2015, pp. 1-7. doi: 10.1016/j.conbuildmat.2015.03.117
13. Krishnapriya, S.; Venkatesh Babu, D. L.; and Prince Arulraj, G., “Isolation and Identification of Bacteria to Improve the Strength of Concrete,” Microbiological Research, V. 174, 2015, pp. 48-55. doi: 10.1016/j.micres.2015.03.009
14. Ramakrishnan, V.; Ramesh, K. P.; and Bang, S. S., “Bacterial Concrete,” Proceedings Volume 4234, Smart Materials, A. R. Wilson and H. Asanuma, eds., 2001, pp. 168-176.
15. Lothenbach, B.; Scrivener, K.; and Hooton, R. D., “Supplementary Cementitious Materials,” Cement and Concrete Research, V. 41, No. 12, 2011, pp. 1244-1256. doi: 10.1016/j.cemconres.2010.12.001
16. Salvador, R. P.; Cavalaro, S. H. P.; Cincotto, M. A.; and de Figueiredo, A. D., “Parameters Controlling Early Age Hydration of Cement Pastes Containing Accelerators for Sprayed Concrete,” Cement and Concrete Research, V. 89, 2016, pp. 230-248. doi: 10.1016/j.cemconres.2016.09.002
17. Mitchell, A. C., and Ferris, F. G., “The Influence of Bacillus pasteurii on the Nucleation and Growth of Calcium Carbonate,” Geomicrobiology Journal, V. 23, No. 3-4, 2006, pp. 213-226. doi: 10.1080/01490450600724233
18. Sarda, D.; Choonia, H. S.; Sarode, D. D.; and Lele, S. S., “Biocalcification by Bacillus pasteurii Urease: A Novel Application,” Journal of Industrial Microbiology and Biotechnology, V. 36, No. 8, 2009, pp. 1111-1115. doi: 10.1007/s10295-009-0581-4
19. Adolphe, J.-P.; Loubiere, J.-F.; and Paradas, J., “Process for the Biological Treatment of an Artificial Surface,” European Patent 90400G97.0, 1990.
20. Li, Y. H.; Chen, Y. Y. M.; and Burne, R. A., “Regulation of Urease Gene Expression by Streptococcus salivarius Growing in Biofilms,” Environmental Microbiology, V. 2, No. 2, 2000, pp. 169-177. doi: 10.1046/j.1462-2920.2000.00088.x
21. Phillips, A. J.; Gerlach, R.; Lauchnor, E.; Mitchell, A. C.; Cunningham, A. B.; and Spangler, L., “Engineered Applications of Ureolytic Biomineralization: A Review,” Biofouling, V. 29, No. 6, 2013, pp. 715-733. doi: 10.1080/08927014.2013.796550
22. Whiffin, V. S.; van Paassen, L. A.; and Harkes, M. P., “Microbial Carbonate Precipitation as a Soil Improvement Technique,” Geomicrobiology Journal, V. 24, No. 5, 2007, pp. 417-423. doi: 10.1080/01490450701436505
23. Dhami, N. K.; Reddy, M. S.; and Mukherjee, A., “Synergistic Role of Bacterial Urease and Carbonic Anhydrase in Carbonate Mineralization,” Applied Biochemistry and Biotechnology, V. 172, No. 5, 2014, pp. 2552-2561. doi: 10.1007/s12010-013-0694-0
24. Soon, N. W.; Lee, L. M.; Khun, T. C.; and Ling, H. S., “Improvements in Engineering Properties of Soils through Microbial-Induced Calcite Precipitation,” KSCE Journal of Civil Engineering, V. 17, No. 4, 2013, pp. 718-728. doi: 10.1007/s12205-013-0149-8
25. Siddique, R.; Singh, K.; Kunal; Singh, M.; Corinaldesi, V.; and Rajor, A., “Properties of Bacterial Rice Husk Ash Concrete,” Construction and Building Materials, V. 121, 2016, pp. 112-119. doi: 10.1016/j.conbuildmat.2016.05.146
26. Chahal, N., and Siddique, R., “Permeation Properties of Concrete Made with Fly Ash and Silica Fume: Influence of Ureolytic Bacteria,” Construction and Building Materials, V. 49, 2013, pp. 161-174. doi: 10.1016/j.conbuildmat.2013.08.023
27. Sangeetha, P.; Vijayalakshmi, R.; and Ramanagopal, S., “Study on Effect of Bacterial in Bagasse Ash Concrete,” International Journal of Civil Engineering and Technology, V. 8, No. 6, 2017, pp. 45-52.
28. Ramachandran, S. K.; Ramakrishnan, V.; and Bang, S. S., “Remediation of Concrete Using Micro-Organisms,” ACI Materials Journal, V. 98, No. 1, Jan.-Feb. 2001, pp. 3-9.
29. De Muynck, W.; Cox, K.; De Belie, N.; and Verstraete, W., “Bacterial Carbonate Precipitation as an Alternative Surface Treatment for Concrete,” Construction and Building Materials, V. 22, No. 5, 2008, pp. 875-885. doi: 10.1016/j.conbuildmat.2006.12.011
30. Nosouhian, F.; Mostofinejad, D.; and Hasheminejad, H., “Influence of Biodeposition Treatment on Concrete Durability in a Sulphate Environment,” Biosystems Engineering, V. 133, 2015, pp. 141-152. doi: 10.1016/j.biosystemseng.2015.03.008
31. Tziviloglou, E.; Wiktor, V.; Jonkers, H. M.; and Schlangen, E., “Bacteria-Based Self-Healing Concrete to Increase Liquid Tightness of Cracks,” Construction and Building Materials, V. 122, 2016, pp. 118-125. doi: 10.1016/j.conbuildmat.2016.06.080
32. De Muynck, W.; Debrouwer, D.; De Belie, N.; and Verstraete, W., “Bacterial Carbonate Precipitation Improves the Durability of Cementitious Materials,” Cement and Concrete Research, V. 38, No. 7, 2008, pp. 1005-1014. doi: 10.1016/j.cemconres.2008.03.005
33. van Paassen, L. A.; Daza, C. M.; Staal, M.; Sorokin, D. Y.; van der Zon, W.; and van Loosdrecht, M. C. M., “Potential Soil Reinforcement by Biological Denitrification,” Ecological Engineering, V. 36, No. 2, 2010, pp. 168-175. doi: 10.1016/j.ecoleng.2009.03.026
34. Achal, V.; Pan, X.; and Özyurt, N., “Improved Strength and Durability of Fly Ash-Amended Concrete by Microbial Calcite Precipitation,” Ecological Engineering, V. 37, No. 4, 2011, pp. 554-559. doi: 10.1016/j.ecoleng.2010.11.009
35. Wang, J. Y.; Soens, H.; Verstraete, W.; and De Belie, N., “Self-Healing Concrete by Use of Microencapsulated Bacterial Spores,” Cement and Concrete Research, V. 56, 2014, pp. 139-152. doi: 10.1016/j.cemconres.2013.11.009
36. Basaran, Z., “Biomineralization in Cement Based Materials: Inoculation of Vegetative Cells,” PhD dissertation, The University of Texas at Austin, Austin, TX, 2013, 233 pp.
37. De Muynck, W.; De Belie, N.; and Verstraete, W., “Microbial Carbonate Precipitation in Construction Materials: A Review,” Ecological Engineering, V. 36, No. 2, 2010, pp. 118-136. doi: 10.1016/j.ecoleng.2009.02.006
38. Castainer, S.; Le Métayer-Levrel, G.; and Perthuisot, J.-P., “Bacterial Roles in the Precipitation of Carbonate Minerals,” Microbial Sediments, R. E. Riding and S. M. Awramik, eds., Springer-Verlag GmbH, Heidelberg, Germany, 2000, pp. 32-39.
39. Riding, R., “Microbial Carbonates: The Geological Record of Calcified Bacterial-Algal Mats and Biofilms,” Sedimentology, V. 47, No. s1, 2000, pp. 179-214. doi: 10.1046/j.1365-3091.2000.00003.x
40. Boquet, E.; Boronat, A.; and Ramos-Cormenzana, A., “Production of Calcite (Calcium Carbonate) Crystals by Soil Bacteria is a General Phenomenon,” Nature, V. 246, No. 5434, 1973, pp. 527-529. doi: 10.1038/246527a0
41. Meddah, M. S.; Praveenkumar, T. R.; Vijayalakshmi, M. M.; Manigandan, S.; and Arunachalam, R., “Mechanical and Microstructural Characterization of Rice Husk Ash and Al2O3 Nanoparticles Modified Cement Concrete,” Construction and Building Materials, V. 255, 2020, Article No. 119358. doi: 10.1016/j.conbuildmat.2020.119358
42. Li, Q.; Hurt, A. P.; and Coleman, N. J., “The Application of 29Si NMR Spectroscopy to the Analysis of Calcium Silicate-Based Cement using Biodentine™ as an Example,” Journal of Functional Biomaterials, V. 10, No. 2, 2019, Article No. 25, 18 pp.
43. Protsak, I. S.; Morozov, Y. M.; Dong, W.; Le, Z.; Zhang, D.; and Henderson, I. M., “A 29Si, 1H, and 13C Solid-State NMR Study on the Surface Species of Various Depolymerized Organosiloxanes at Silica Surface,” Nanoscale Research Letters, V. 14, 2019, Article No. 160, 15 pp.
44. Cong, X., and Kirkpatrick, R. J., “29Si MAS NMR Study of the Structure of Calcium Silicate Hydrate,” Advanced Cement Based Materials, V. 3, No. 3-4, 1996, pp. 144-156. doi: 10.1016/S1065-7355(96)90046-2
45. Skibsted, J., and Hall, C., “Characterization of Cement Minerals, Cements and their Reaction Products at the Atomic and Nanoscale Level,” Proceedings of the 12th International Congress on the Chemistry of Cement (ICCC 2007), Montreal, QC, Canada, 2007, 44 pp.
46. Colombet, P.; Zanni, H.; Grimmer, A.-R.; and Sozzani, P., eds., Nuclear Magnetic Resonance Spectroscopy of Cement-Based Materials, Springer-Verlag, Berlin, Germany, 1998, 430 pp.