Title:
Modeling Tensile Strength of Concrete Using Support Vector Regression
Author(s):
J. A. Guzmán-Torres, F. J. Domínguez-Mota, E. M. Alonso-Guzmán, and W. Martínez-Molina
Publication:
Materials Journal
Volume:
119
Issue:
3
Appears on pages(s):
25-37
Keywords:
electrical resistivity; machine learning (ML); support vector regression; tensile strength
DOI:
10.14359/51734601
Date:
5/1/2022
Abstract:
Innovations are being developed with different additives in concrete mixtures to enhance their performance under certain conditions. This work models the split tensile strength through the electrical resistivity using a machine learning (ML) algorithm in different concrete mixtures. One of the most frequent nondestructive tests used on concrete is electrical resistivity (Er) for the simplicity of taking measurements on concrete elements. ML involves methods that provide solutions to advanced problems employing computational algorithms. This research employs a support vector regression algorithm, which can predict the split tensile strength value using a nondestructive test. The outcomes of this research exhibit a high correlation between electrical concrete resistivity and split tensile strength over 90%. Support vector regression algorithm
achieves accuracy over 93% in the forecasting task. Of note is that the modified concrete contains starch as an addition to prove its performance compared to conventional concrete.
Related References:
1. Chow, J. K.; Su, Z.; Wu, J.; Tan, P. S.; Mao, X.; and Wang, Y. H., “Anomaly Detection of Defects on Concrete Structures with the Convolutional Autoencoder,” Advanced Engineering Informatics, V. 45, 2020, p. 101105. doi: 10.1016/j.aei.2020.101105
2. Breysse, D.; Balayssac, J.-P.; Alwash, M.; Biondi, S.; Chiauzzi, L.; Corbett, D.; Garnier, V.; Gonçalves, A.; Grantham, M. Gunes, O.; Kenaï, S.; Luprano, V. A. M.; Masi, A.; Moczko, A.; Qasrawi, H. Y.; Romão, X.; Sbartaï, Z. M.; Monteiro, A. V.; and Vasanelli, E., “In-Situ Strength Assessment of Concrete: Detailed Guidelines,” Nondestructive In Situ Strength Assessment of Concrete, Springer, Cham, 2021, pp. 3-56.
3. Guzmán-Torres, J. A.; Domínguez-Mota, F. J.; and Alonso-Guzmán, E. M., “A Multi-Layer Approach to Classify the Risk of Corrosion in Concrete Specimens that Contain Different Additives,” Case Studies in Construction Materials, V. 15, 2021, p. e00719 doi: 10.1016/j.cscm.2021.e00719
4. Breysse, D.; Balayssac, J.-P.; Biondi, S.; Borosnyoi, A.; Candigliota, E.; Chiauzzi, L.; Garnier, V.; Grantham, M.; Gunes, O.; Luprano, V. A. M.; Masi, A.; Pfister, V.; Sbartai, Z. M.; and Szilagyi, K., “How Investigators Can Assess Concrete Strength with On-site Nondestructive Tests and Lessons to Draw from a Benchmark,” Nondestructive In Situ Strength Assessment of Concrete, Springer, Cham, 2021, pp. 183-218.
5. Mandiwal, P., and Sagar, J., “Tensile Strength & Durability Study on Self-Curing Concrete as a Partial Replacement of Cement by PEG-400,” International Journal for Research in Engineering Application & Management (ISSN: 2454-9150), 2019, V. 4, No 10, pp. 244-248.
6. Guzman-Torres, J.A.; Dominguez Mota, F. J.; Alonso-Guzman, E. M.; Martinez-Molina, W.; Ruiz, J. G. T.; Chavez-Garcia, H. L.; Seras, M. A. N.; and Sanchez, M. A., “Prediction of the Tensile Strength and Electrical Resistivity of Concrete with Organic Polymer and their Influence on Carbonation Using Data Science and a Machine Learning Technique,” Key Engineering Materials, Trans Tech Publications Ltd, 2020, pp. 72-77.
7. Bayar, G., and Bilir, T., “A Novel Study for the Estimation of Crack Propagation in Concrete using Machine Learning Algorithms,” Construction and Building Materials, V. 215, 2019, pp. 670-685. doi: 10.1016/j.conbuildmat.2019.04.227
8. Taffese, W. Z.; Sistonen, E.; and Puttonen, J., “CaPrM: Carbonation Prediction Model for Reinforced Concrete using Machine Learning Methods,” Construction and Building Materials, V. 100, 2015, pp. 70-82. doi: 10.1016/j.conbuildmat.2015.09.058
9. Sun, J.; Zhang, J.; Gu, Y.; Huang, Y.; Sun, Y.; and Ma, G., “Prediction of Permeability and Unconfined Compressive Strength of Pervious Concrete using Evolved Support Vector Regression,” Construction and Building Materials, V. 207, 2019, pp. 440-449. doi: 10.1016/j.conbuildmat.2019.02.117
10. Saha, P.; Debnath, P.; and Thomas, P., “Prediction of Fresh and Hardened Properties of Self-Compacting Concrete using Support Vector Regression Approach,” Neural Computing & Applications, V. 32, No. 12, 2020, pp. 7995-8010. doi: 10.1007/s00521-019-04267-w
11. Yuvaraj, P.; Ramachandra Murthy, A.; Iyer, N. R.; Sekar, S. K.; and Samui, P., “Support Vector Regression Based Models to Predict Fracture Characteristics of High Strength and Ultra High Strength Concrete Beams,” Engineering Fracture Mechanics, V. 98, 2013, pp. 29-43. doi: 10.1016/j.engfracmech.2012.11.014
12. Chou, J.-S.; Ngo, N.-T.; and Pham, A.-D., “Shear Strength Prediction in Reinforced Concrete Deep Beams Using Nature-Inspired Metaheuristic Support Vector Regression,” Journal of Computing in Civil Engineering, ASCE, V. 30, No. 1, 2016, p. 04015002. doi: 10.1061/(ASCE)CP.1943-5487.0000466
13. Guzman-Torres, J. A.; Dominguez-Mota, F. J.; Alonso-Guzman, E. M.; Martinez-Molina, W.; and Ruiz, G. T., “A Review of Concrete Performance Employing a Starch as Addition Using Several Regression Techniques,” Advanced Materials Research, Trans Tech Publications Ltd, 2021, pp. 1-14.
14. Raina, R.; Battle, A.; Lee, H.; Packer, B.; and Ng, A. Y., “Self-Taught Learning: Transfer Learning from Unlabeled Data,” Proceedings of the 24th International Conference on Machine learning, 2007, pp. 759-766.
15. Igual, L., and Seguí, S., “Introduction to Data Science,” Introduction to Data Science, Springer, Cham, 2017, pp. 1-4.
16. Guzman-Torres, J. A., “El Comportamiento del Pulso Ultrasónico en un Concreto de Alto Desempeño Adicionado con un Polímero Orgánico Comparado con un Concreto sin Adiciones,” Congreso CONPAT 2019, Tuxtla Gutiérrez, Chiapas, 2019.
17. ASTM C702-98, “Standard Practice for Reducing Samples of Aggregate to Testing Size,” ASTM International, West Conshohocken, PA, 1998.
18. ACI Committee 211, “Standard Practice for Selecting Proportions for Normal, Heavyweight, and Mass Concrete (ACI 211.1-91) (Reapproved 2009),” American Concrete Institute, Farmington Hills, MI, 2009, 38 pp.
19. NMX-C-414-ONNCCE-2017, “Industria de la Construcción-Cementantes Hidráulicos–Especificaciones y Métodos de Ensayo,” Organismo Nacional de Normalización y Certificación de la Construcción y Edificación, Mexico City, Mexico, 2017.
20. Torres-Acosta, A. A., and Alejandra Díaz-Cruz, L., “Concrete Durability Enhancement from Nopal (Opuntia Ficus-Indica) Additions,” Construction and Building Materials, V. 243, 2020, p. 118170. doi: 10.1016/j.conbuildmat.2020.118170
21. Guzmán-Torres, J. A., et al., “Predicting the Compressive Strength Based in NDT Using Deep Learning,” The Concrete Industry in the Era of Artificial Intelligence, SP-350, American Concrete Institute, Farmington Hills, MI, 2021, pp. 90-102.
22. Layssi, H.; Ghods, P.; Alizadeh, A. R.; and Salehi, M., “Electrical Resistivity of Concrete,” Concrete International, V. 37, No. 5, May 2015, pp. 41-46.
23. Guzmán Torres, J. A., “Análisis de Sensibilidad y Ciencia de Datos de un Concreto de Alta Durabilidad y Alto Desempeño en Infraestructura,” PhD thesis, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mexico, 2020.
24. Zain, M. F. M.; Mahmud, H. B.; Ilham, A.; and Faizal, M., “Prediction of Splitting Tensile Strength of High-Performance Concrete,” Cement and Concrete Research, V. 32, No. 8, 2002, pp. 1251-1258. doi: 10.1016/S0008-8846(02)00768-8
25. Chhorn, C.; Hong, S. J.; and Lee, S. W., “Relationship Between Compressive and Tensile Strengths of Roller-Compacted Concrete,” Journal of Traffic and Transportation Engineering, V. 5, No. 3, 2018, pp. 215-223. (English Edition)
26. Xiao, H.; Chen, D.; Xu, J.; and Guo, S., “Defects Identification Using the Improved Ultrasonic Measurement Model and Support Vector Machines,” NDT & E International, V. 111, 2020, p. 102223. doi: 10.1016/j.ndteint.2020.102223
27. Ling, H.; Qian, C.; Kang, W.; Liang, C.; and Chen, H., “Combination of Support Vector Machine and K-Fold Cross Validation to Predict Compressive Strength of Concrete in Marine Environment,” Construction and Building Materials, V. 206, 2019, pp. 355-363. doi: 10.1016/j.conbuildmat.2019.02.071
28. Pisner, D. A., and Schnyer, D. M., “Support Vector Machine,” Machine Learning, Academic Press, 2020, pp. 101-121.
29. Hariri-Ardebili, M. A., and Pourkamali-Anaraki, F., “Support Vector Machine Based Reliability Analysis of Concrete Dams,” Soil Dynamics and Earthquake Engineering, V. 104, 2018, pp. 276-295. doi: 10.1016/j.soildyn.2017.09.016
30. Garreta, R.; Moncecchi, G.; Hauck, T.; and Hackeling, G., Scikit-Learn: Machine Learning Simplified: Implement Scikit-Learn into Every Step of the Data Science Pipeline, Packt Publishing Ltd, 2017.
31. David, A. F., Statistical Models: Theory and Practice, Cambridge University Press, Cambridge, UK, 2009.
32. Bonamente, M., Statistics and Analysis of Scientific Data, Springer, 2017.
33. Guzmán-Torres, J. A.; Domínguez-Mota, F. J.; and Alonso-Guzmán, E. M., “Estimating the Flexural Strength of Concrete Using Compressive Strength as Input Value in a Deep Learning Model,” IOP Conference Series: Materials Science and Engineering, IOP Publishing, 2021, p. 012019.