Supplementary Cementitious Materials in Portland- Limestone Cements

International Concrete Abstracts Portal

The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

  


Title: Supplementary Cementitious Materials in Portland- Limestone Cements

Author(s): Keshav Bharadwaj, O. Burkan Isgor, and W. Jason Weiss

Publication: Materials Journal

Volume: 119

Issue: 2

Appears on pages(s): 141-154

Keywords: clinker; limestone; portland-limestone cement (PLC); supplementary cementitious materials (SCMs); thermodynamic modeling

DOI: 10.14359/51734356

Date: 3/1/2022

Abstract:
Thermodynamic modeling was used to study the performance of portland-limestone cements (PLC) when they are combined with supplementary cementitious materials (SCMs). The type of cement (that is, I, II, III, or V) did not substantially affect the porosity; however, cements with a greater alumina content resulted in more ettringite formation than low-alumina cements in systems with similar porosity. Alumina in clinker or SCM was predicted to react with calcite to form hemi-/monocarbonate phases when calcium hydroxide is available, and strätlingite if calcium hydroxide is depleted. The decrease in the porosity was greater in the PLC+ metakaolin systems due to the higher available reactive alumina than PLC+fly ash and PLC+slag systems. SCMs can be beneficially used with PLC.

Related References:

1. Tennis, P. D.; Thomas, M. D. A.; and Weiss, W. J., “State-of-the-Art Report on Use of Limestone in Cements at Levels of up to 15%,” PCA R&D SN3148, Portland Cement Association, Skokie, IL, 2011, 78 pp.

2. Hawkins, P.; Tennis, P. D.; and Detwiler, R. J., “The Use of Limestone in Portland Cement: A State-of-the-Art Review,” Engineering Bulletin 227, Portland Cement Association, Skokie, IL, 2005, 41 pp.

3. ASTM C150/C150M-19, “Standard Specification for Portland Cement,” ASTM International, West Conshohocken, PA, 2019, 10 pp.

4. AASHTO M 85, “Standard Specification for Portland Cement,” American Association of State Highway and Transportation Officials, Washington, DC, 2020, 16 pp.

5. ASTM C595/C595M-20, “Standard Specification for Blended Hydraulic Cements,” ASTM International, West Conshohocken, PA, 2020, 8 pp.

6. AASHTO M 240M/M 240, “Standard Specification for Blended Hydraulic Cement,�� American Association of State Highway and Transportation Officials, Washington, DC, 2020, 16 pp.

7. Hooton, R. D., and Thomas, M. D. A., “Sulfate Resistance of Mortar and Concrete Produced with Portland-Limestone Cement and Supplementary Cementing Materials: Recommendation for ASTM C595/AASHTO M 240,” PCA R&D SN3285a, Portland Cement Association, Skokie, IL, 2016, 28 pp.

8. Lothenbach, B.; Kulik, D. A.; Matschei, T.; Balonis, M.; Baquerizo, L.; Dilnesa, B.; Miron, G. D.; and Myers, R. J., “Cemdata18: A Chemical Thermodynamic Database for Hydrated Portland Cements and Alkali-Activated Materials,” Cement and Concrete Research, V. 115, Jan. 2019, pp. 472-506. doi: 10.1016/j.cemconres.2018.04.018

9. Lothenbach, B.; Le Saout, G.; Gallucci, E.; and Scrivener, K., “Influence of Limestone on the Hydration of Portland Cements,” Cement and Concrete Research, V. 38, No. 6, 2008, pp. 848-860. doi: 10.1016/j.cemconres.2008.01.002

10. Damidot, D.; Stronach, S.; Kindness, A.; Atkins, M.; and Glasser, F. P., “Thermodynamic Investigation of the CaO Al2O3 CaCO3 H2O Closed System at 25° C and the Influence of Na2O,” Cement and Concrete Research, V. 24, No. 3, 1994, pp. 563-572. doi: 10.1016/0008-8846(94)90145-7

11. Ramezanianpour, A. M., and Hooton, R. D., “A Study on Hydration, Compressive Strength, and Porosity of Portland-Limestone Cement Mixes Containing SCMs,” Cement and Concrete Composites, V. 51, 2014, pp. 1-13. doi: 10.1016/j.cemconcomp.2014.03.006

12. Thomas, M. D. A., and Hooton, R. D., “The Durability of Concrete Produced with Portland-Limestone Cement: Canadian Studies,” PCA R&D SN3142, Portland Cement Association, Skokie, IL, 2010, 28 pp.

13. Matschei, T., and Glasser, F. P., “Temperature Dependence, 0 to 40°C, of the Mineralogy of Portland Cement Paste in the Presence of Calcium Carbonate,” Cement and Concrete Research, V. 40, No. 5, 2010, pp. 763-777. doi: 10.1016/j.cemconres.2009.11.010

14. De Weerdt, K.; Kjellsen, K. O.; Sellevold, E.; and Justnes, H., “Synergy between Fly Ash and Limestone Powder in Ternary Cements,” Cement and Concrete Composites, V. 33, No. 1, 2011, pp. 30-38. doi: 10.1016/j.cemconcomp.2010.09.006

15. Matschei, T.; Glasser, F. P.; Herfort, D.; and Lothenbach, B., “Relationships of Cement Paste Mineralogy to Porosity and Mechanical Properties,” International Conference on Modelling of Heterogeneous Materials with Applications in Construction and Biomedical Engineering, Prague, Czech Republic, 2007.

16. Antoni, M.; Rossen, J.; Martirena, F.; and Scrivener, K., “Cement Substitution by a Combination of Metakaolin and Limestone,” Cement and Concrete Research, V. 42, No. 12, 2012, pp. 1579-1589. doi: 10.1016/j.cemconres.2012.09.006

17. Ashby, M. F., and Cebon, D., “Materials Selection in Mechanical Design,” MRS Bulletin, V. 30, No. 12, 2005, 995 pp.

18. Abrams, D. A., “Design of Concrete Mixtures, Bulletin 1,” Structural Materials Research Laboratory, Lewis Institute, Chicago, IL, 1918.

19. Bolomey, J., “Granulation et prévision de la résistance probable des bétons,” Travaux, V. 19, No. 30, 1935, pp. 228-232.

20. Feret, R., “On the Compactness of the Mortars,” Annales des Ponts et Chaussées, Série, V. 7, No. 4, 1892, pp. 5-164.

21. Lothenbach, B.; Matschei, T.; Möschner, G.; and Glasser, F. P., “Thermodynamic Modelling of the Effect of Temperature on the Hydration and Porosity of Portland Cement,” Cement and Concrete Research, V. 38, No. 1, 2008, pp. 1-18. doi: 10.1016/j.cemconres.2007.08.017

22. Lothenbach, B., and Winnefeld, F., “Thermodynamic Modelling of the Hydration of Portland Cement,” Cement and Concrete Research, V. 36, No. 2, 2006, pp. 209-226. doi: 10.1016/j.cemconres.2005.03.001

23. Bharadwaj, K.; Glosser, D.; Moradllo, M. K.; Isgor, O. B.; and Weiss, W. J., “Toward the Prediction of Pore Volumes and Freeze-Thaw Performance of Concrete Using Thermodynamic Modelling,” Cement and Concrete Research, V. 124, 2019, Article No. 105820. doi: 10.1016/j.cemconres.2019.105820

24. Azad, V. J.; Suraneni, P.; Isgor, O. B.; and Weiss, W. J., “Interpreting the Pore Structure of Hydrating Cement Phases through a Synergistic Use of the Powers-Brownyard Model, Hydration Kinetics, and Thermodynamic Calculations,” Advances in Civil Engineering Materials, V. 6, No. 1, 2017, pp. 1-16.

25. Glosser, D.; Azad, V. J.; Suraneni, P.; Isgor, O. B.; and Weiss, W. J., “Extension of Powers-Brownyard Model to Pastes Containing Supplementary Cementitious Materials,” ACI Materials Journal, V. 116, No. 5, Sept. 2019, pp. 205-216. doi: 10.14359/51714466

26. Powers, T. C., “Structure and Physical Properties of Hardened Portland Cement Paste,” Journal of the American Ceramic Society, V. 41, No. 1, 1958, pp. 1-6. doi: 10.1111/j.1151-2916.1958.tb13494.x

27. Powers, T. C., and Brownyard, T. L., “Studies of the Physical Properties of Hardened Portland Cement Paste,” ACI Journal Proceedings, V. 43, No. 9, Nov. 1946, pp. 249-336.

28. Thomas M., Supplementary Cementing Materials in Concrete, CRC Press, Boca Raton, FL, 2013, 210 pp.

29. Bharadwaj, K.; Ghantous, R. M.; Sahan, F.; Isgor, O. B.; and Weiss, W. J., “Predicting Pore Volume, Compressive Strength, Pore Connectivity, and Formation Factor in Cementitious Pastes Containing Fly Ash,” Cement and Concrete Composites, V. 122, 2021, Article No. 104113. doi: 10.1016/j.cemconcomp.2021.104113

30. Pichler, B., and Hellmich, C., “Upscaling Quasi-Brittle Strength of Cement Paste and Mortar: A Multi-Scale Engineering Mechanics Model,” Cement and Concrete Research, V. 41, No. 5, 2011, pp. 467-476. doi: 10.1016/j.cemconres.2011.01.010

31. Pichler. B.; Hellmich, C.; Eberhardsteiner, J.; Wasserbauer, J,; Termkhajornkit, P.; Barbarulo, R.; and Chanvillard, G., “The Counteracting Effects of Capillary Porosity and of Unhydrated Clinker Grains on the Macroscopic Strength of Hydrating Cement Paste—A Multiscale Model,” Mechanics and Physics of Creep, Shrinkage, and Durability of Concrete: A Tribute to Zdeňek P. Bažant, 2013, pp. 40-47.

32. Pichler, B.; Hellmich, C.; Eberhardsteiner, J.; Wasserbauer, J.; Termkhajornkit, P.; Barbarulo, R.; and Chanvillard, G., “Effect of Gel-Space Ratio and Microstructure on Strength of Hydrating Cementitious Materials: An Engineering Micromechanics Approach,” Cement and Concrete Research, V. 45, Mar. 2013, pp. 55-68. doi: 10.1016/j.cemconres.2012.10.019

33. Termkhajornkit, P.; Vu, Q. H.; Barbarulo, R.; Daronnat, S.; and Chanvillard, G., “Dependence of Compressive Strength on Phase Assemblage in Cement Pastes: Beyond Gel-Space Ratio—Experimental Evidence and Micromechanical Modeling,” Cement and Concrete Research, V. 56, Feb. 2014, pp. 1-11. doi: 10.1016/j.cemconres.2013.10.007

34. Bentz, D. P.; Ardani, A.; Barrett, T.; Jones, S. Z.; Lootens, D.; Peltz, M. A.; Sato, T.; Stutzman, P. E.; Tanesi, J.; and Weiss, W. J., “Multi-Scale Investigation of the Performance of Limestone in Concrete,” Construction and Building Materials, V. 75, 2015, pp. 1-10. doi: 10.1016/j.conbuildmat.2014.10.042

35. Bentz, D. P.; Irassar, E. F.; Bucher, B. E.; and Weiss, W. J., “Limestone Fillers Conserve Cement; Part 1: An Analysis Based on Powers’ Model,” Concrete International, V. 31, No. 11, Nov. 2009, pp. 41-46.

36. de Larrard, F., Concrete Mixture Proportioning: A Scientific Approach. Modern Concrete Technology, A. Bentur and S. Mindess, eds., 1999, 440 pp.

37. Snyder, K. A., “The Relationship between the Formation Factor and the Diffusion Coefficient of Porous Materials Saturated with Concentrated Electrolytes: Theoretical and Experimental Considerations,” 2000, https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=860304. (last accessed Feb. 16, 2022)

38. Spragg, R.; Qiao, C.; Barrett, T.; and Weiss, J., “Assessing a Concrete’s Resistance to Chloride Ion Ingress Using the Formation Factor,” Corrosion of Steel in Concrete Structures, 2016, pp. 211-238.

39. Spragg, R.; Villani, C.; and Weiss, J., “Electrical Properties of Cementitious Systems: Formation Factor Determination and the Influence of Conditioning Procedures,” Advances in Civil Engineering Materials, V. 5, No. 1, 2016, pp. 124-148. doi: 10.1520/ACEM20150035

40. Weiss, W. J.; Ley, M. T.; Isgor, O. B.; and Van Dam, T., “Toward Performance Specifications for Concrete Durability: Using the Formation Factor for Corrosion and Critical Saturation for Freeze-Thaw,” Proceedings of the 96th Annual Transportation Research Board, Washington, DC, 2017, pp. 8-12.

41. Weiss, W. J.; Barrett, T. J.; Qiao, C.; and Todak, H., “Toward a Specification for Transport Properties of Concrete Based on the Formation Factor of a Sealed Specimen,” Advances in Civil Engineering Materials, V. 5, No. 1, 2016, pp. 179-194. doi: 10.1520/ACEM20160004

42. Weiss, W. J.; Spragg, R. P.; Isgor, O. B.; Ley, M. T.; and Van Dam, T., “Toward Performance Specifications for Concrete: Linking Resistivity, RCPT and Diffusion Predictions Using the Formation Factor for Use in Specifications,” High Tech Concrete: Where Technology and Engineering Meet, Springer, Switzerland, 2018, pp. 2057-2065.

43. Archie, G. E., “The Electrical Resistivity Log as an Aid in Determining Some Reservoir Characteristics,” Transactions of the AIME, V. 146, No. 1, 1942, pp. 54-62.

44. Qiao, C.; Coyle, A. T.; Isgor, O. B.; and Weiss, W. J., “Prediction of Chloride Ingress in Saturated Concrete Using Formation Factor and Chloride Binding Isotherm,” Advances in Civil Engineering Materials, V. 7, No. 1, 2018, pp. 206-220. doi: 10.1520/ACEM20170141

45. Garboczi, E. J., “Permeability, Diffusivity, and Microstructural Parameters: A Critical Review,” Cement and Concrete Research, V. 20, No. 4, 1990, pp. 591-601. doi: 10.1016/0008-8846(90)90101-3

46. Rajabipour, F., “Insitu Electrical Sensing and Material Health Monitoring in Concrete Structures,” PhD thesis, Purdue University, West Lafayette, IN, 2006.

47. Moradllo, M. K.; Qiao, C.; Isgor, B.; Reese, S.; and Weiss, W. J., “Relating Formation Factor of Concrete to Water Absorption,” ACI Materials Journal, V. 115, No. 6, Nov. 2018, pp. 887-898. doi: 10.14359/51706844

48. Qiao, C.; Moradllo, M. K.; Hall, H.; Ley, M. T.; and Weiss, W. J., “Electrical Resistivity and Formation Factor of Air-Entrained Concrete,” ACI Materials Journal, V. 116, No. 3, May 2019, pp. 85-93. doi: 10.14359/51714506

49. Isgor, O. B., and Weiss, W. J., “A Nearly Self-Sufficient Framework for Modelling Reactive-Transport Processes in Concrete,” Materials and Structures, V. 52, No. 1, 2019, Article No. 3. doi: 10.1617/s11527-018-1305-x

50. Jafari Azad, V.; Erbektas, A. R.; Qiao, C.; Isgor, O. B.; and Weiss, W. J., “Relating the Formation Factor and Chloride Binding Parameters to the Apparent Chloride Diffusion Coefficient of Concrete,” Journal of Materials in Civil Engineering, ASCE, V. 31, No. 2, 2019, p. 04018392. doi: 10.1061/(ASCE)MT.1943-5533.0002615

51. Lothenbach, B.; Scrivener, K.; and Hooton, R. D., “Supplementary Cementitious Materials,” Cement and Concrete Research, V. 41, No. 12, 2011, pp. 1244-1256. doi: 10.1016/j.cemconres.2010.12.001

52. Mehta, P. K., and Monteiro, P. J. M., Concrete: Microstructure, Properties, and Materials, McGraw-Hill Education, New York, NY, 2006, 684 pp.

53. Barrett, T. J.; Sun, H.; Weiss, W. J., Performance of Portland Limestone Cements: Cements Designed to be More Sustainable That Include Up to 15% Limestone Addition, 2013.

54. Monical, J.; Unal, E.; Barrett, T.; Farnam, Y.; and Weiss, W. J., “Reducing Joint Damage in Concrete Pavements: Quantifying Calcium Oxychloride Formation,” Transportation Research Record: Journal of the Transportation Research Board, V. 2577, No. 1, 2016, pp. 17-24. doi: 10.3141/2577-03

55. Suraneni, P.; Azad, V. J.; Isgor, B. O.; and Weiss, W. J., “Calcium Oxychloride Formation in Pastes Containing Supplementary Cementitious Materials: Thoughts on the Role of Cement and Supplementary Cementitious Materials Reactivity,” RILEM Technical Letters, V. 1, 2016, pp. 24-30. doi: 10.21809/rilemtechlett.2016.7

56. Suraneni, P.; Monical, J.; Unal, E.; Farnam, Y.; and Weiss, J., “Calcium Oxychloride Formation Potential in Cementitious Pastes Exposed to Blends of Deicing Salt,” ACI Materials Journal, V. 114, No. 4, July-Aug. 2017, pp. 631-641. doi: 10.14359/51689607

57. Suraneni, P.; Salgado, N.; Carolan, H.; Li, C.; Azad, V.; Isgor, B.; Ideker, J.; and Weiss, W. J., “Mitigation of Deicer Damage in Concrete Pavements Caused by Calcium Oxychloride Formation—Use of Ground Lightweight Aggregates,” International RILEM Conference on Materials, Systems and Structures in Civil Engineering, Lyngby, Denmark, 2016, pp. 171-180.

58. Whatley, S. N.; Suraneni, P.; Azad, V. J.; Isgor, O. B.; and Weiss, J., “Mitigation of Calcium Oxychloride Formation in Cement Pastes Using Undensified Silica Fume,” Journal of Materials in Civil Engineering, ASCE, V. 29, No. 10, 2017, p. 04017198. doi: 10.1061/(ASCE)MT.1943-5533.0002052

59. Ghods, P.; Isgor, O. B.; McRae, G.; and Miller, T., “The Effect of Concrete Pore Solution Composition on the Quality of Passive Oxide Films on Black Steel Reinforcement,” Cement and Concrete Composites, V. 31, No. 1, 2009, pp. 2-11. doi: 10.1016/j.cemconcomp.2008.10.003

60. Hou, X.; Struble, L. J.; and Kirkpatrick, R. J., “Formation of ASR Gel and the Roles of C-S-H and Portlandite,” Cement and Concrete Research, V. 34, No. 9, 2004, pp. 1683-1696. doi: 10.1016/j.cemconres.2004.03.026

61. Hooton, R. D.; Thomas, M. D. A.; and Ramlochan, T., “Use of Pore Solution Analysis in Design for Concrete Durability,” Advances in Cement Research, V. 22, No. 4, 2010, pp. 203-210. doi: 10.1680/adcr.2010.22.4.203

62. Kulik, D. A.; Wagner, T.; Dmytrieva, S. V.; Kosakowski, G.; Hingerl, F. F.; Chudnenko, K. V.; and Berner, U. R., “GEM-Selektor Geochemical Modeling Package: Revised Algorithm and GEMS3K Numerical Kernel for Coupled Simulation Codes,” Computational Geosciences, V. 17, No. 1, 2013, pp. 1-24.

63. Deschner, F.; Lothenbach, B.; Winnefeld, F.; and Neubauer, J., “Effect of Temperature on the Hydration of Portland Cement Blended with Siliceous Fly Ash,” Cement and Concrete Research, V. 52, Oct. 2013, pp. 169-181. doi: 10.1016/j.cemconres.2013.07.006

64. Dilnesa, B. Z.; Lothenbach, B.; Renaudin, G.; Wichser, A.; and Kulik, D., “Synthesis and Characterization of Hydrogarnet Ca3 (AlxFe1− x)2(SiO4)y(OH)4(3 − y),” Cement and Concrete Research, V. 59, 2014, pp. 96-111. doi: 10.1016/j.cemconres.2014.02.001

65. De Weerdt, K.; Ben Haha, M.; Le Saout, G.; Kjellsen, K. O.; Justnes, H.; and Lothenbach, B., “Hydration Mechanisms of Ternary Portland Cements Containing Limestone Powder and Fly Ash,” Cement and Concrete Research, V. 41, No. 3, 2011, pp. 279-291. doi: 10.1016/j.cemconres.2010.11.014

66. Matschei, T.; Lothenbach, B.; and Glasser, F. P., “Thermodynamic Properties of Portland Cement Hydrates in the System CaO–Al2O3–SiO2–CaSO4–CaCO3–H2O,” Cement and Concrete Research, V. 37, No. 10, 2007, pp. 1379-1410. doi: 10.1016/j.cemconres.2007.06.002

67. Parrot, L. J., “Prediction of Cement Hydration,” Proceedings of the British Ceramic Society, V. 35, 1984, pp. 41-53.

68. Glosser, D.; Suraneni, P.; Isgor, O. B.; and Weiss, W. J., “Estimating Reaction Kinetics of Cementitious Pastes Containing Fly Ash,” Cement and Concrete Composites, V. 112, 2020, Article No. 103655. doi: 10.1016/j.cemconcomp.2020.103655

69. Glosser, D. B., “Equilibrium and Non-equilibrium Thermodynamic Modeling of Cement Pastes Containing Supplementary Cementitious Materials,” PhD thesis, Oregon State University, Corvallis, OR, 2020.

70. Taylor, H. F. W., Cement Chemistry, Thomas Telford Ltd., London, UK, 1997.

71. Choudhary, A.; Ghantous, R. M.; Bharadwaj, K.; Opdahl, O.; Isgor, O. B.; and Weiss, W. J., “Electrical and Transport Properties of Cement Mortar Made Using Portland Limestone Cement,” Advances in Civil Engineering Materials, 2021. (in review)

72. Zajac, M.; Rossberg, A.; Le Saout, G.; and Lothenbach, B., “Influence of Limestone and Anhydrite on the Hydration of Portland Cements,” Cement and Concrete Composites, V. 46, 2014, pp. 99-108. doi: 10.1016/j.cemconcomp.2013.11.007

73. Schöler, A.; Lothenbach, B.; Winnefeld, F.; and Zajac, M., “Hydration of Quaternary Portland Cement Blends Containing Blast-Furnace Slag, Siliceous Fly Ash and Limestone Powder,” Cement and Concrete Composites, V. 55, 2015, pp. 374-382. doi: 10.1016/j.cemconcomp.2014.10.001

74. Zajac, M.; Dienemann, W.; and Bolte, G., “Comparative Experimental and Virtual Investigations of the Influence of Calcium and Magnesium Carbonate on Reacting Cement,” Proceedings of the 13th International Congress on the Chemistry of Cements, Madrid, Spain, 2011.

75. Zajac, M.; Durdzinski, P.; Stabler, C.; Skocek, J.; Nied, D.; and Ben Haha, M., “Influence of Calcium and Magnesium Carbonates on Hydration Kinetics, Hydrate Assemblage and Microstructural Development of Metakaolin Containing Composite Cements,” Cement and Concrete Research, V. 106, 2018, pp. 91-102. doi: 10.1016/j.cemconres.2018.01.008

76. Schöler, A.; Lothenbach, B.; Winnefeld, F.; Ben Haha, M.; Zajac, M.; and Ludwig, H.-M., “Early Hydration of SCM-Blended Portland Cements: A Pore Solution and Isothermal Calorimetry Study,” Cement and Concrete Research, V. 93, 2017, pp. 71-82. doi: 10.1016/j.cemconres.2016.11.013

77. Bhatty, J. I., and Tennis, P. D., “U.S. and Canadian Cement Characteristics: 2004,” PCA R&D SN2879, Portland Cement Association, Skokie, IL, 2008, 67 pp.

78. Azad, V. J.; Suraneni, P.; Trejo, D.; Weiss, W. J.; and Isgor, O. B., “Thermodynamic Investigation of Allowable Admixed Chloride Limits in Concrete,” ACI Materials Journal, V. 115, No. 5, Sept. 2018, pp. 727-738. doi: 10.14359/51702349

79. Suraneni, P.; Hajibabaee, A.; Ramanathan, S.; Wang, Y.; and Weiss, J., “New Insights from Reactivity Testing of Supplementary Cementitious Materials,” Cement and Concrete Composites, V. 103, 2019, pp. 331-338. doi: 10.1016/j.cemconcomp.2019.05.017

80. Tennis, P. D., “Chemical and Physical Characteristics of US Hydraulic Cements: 2014,” PCA R&D SN3284, Portland Cement Association, Skokie, IL, 2016, 32 pp.

81. Poon, C.-S.; Lam, L.; Kou, S.; Wong, Y.-L.; and Wong, R., “Rate of Pozzolanic Reaction of Metakaolin in High-Performance Cement Pastes,” Cement and Concrete Research, V. 31, No. 9, 2001, pp. 1301-1306. doi: 10.1016/S0008-8846(01)00581-6

82. Chopperla, K. S. T.; Smith, J. A.; and Ideker, J., “The Efficacy of Portland-Limestone Cements with Supplementary Cementitious Materials to Prevent Alkali-Silica Reaction,” Cement, 2021. (in review


ALSO AVAILABLE IN:

Electronic Materials Journal



  

Edit Module Settings to define Page Content Reviewer