Title:
Effect of Fiber Orientation on Compressive Strength of Ultra-High-Performance Fiber-Reinforced Concrete
Author(s):
Philipp Riedel and Torsten Leutbecher
Publication:
Materials Journal
Volume:
118
Issue:
2
Appears on pages(s):
199-209
Keywords:
anisotropy; compressive strength; failure; induction; orientation; specimen; strength class for concrete; strength test; ultra-high-performance concrete (UHPC)
DOI:
10.14359/51730417
Date:
3/1/2021
Abstract:
The structural behavior of ultra-high-performance fiber-reinforced concrete (UHPFRC) is mainly affected by the fiber volume fraction, the fiber distribution, and the fiber orientation. Fiber orientation especially may vary (locally) in structural members depending on their geometry, the consistency of the fresh concrete, and the way of placing and compacting the concrete. As a result, UHPFRC may behave anisotropically in both tension and compression. To quantify the effect of fiber orientation on the behavior of UHPFRC in compression, tests on cylinders and differently fabricated cubes made of fine- and coarse-grained UHPFRC mixtures were performed. Especially for high fiber volume fraction, specimens with predominantly unidirectional fiber orientation perpendicular to the loading direction showed significantly higher compressive strengths than specimens with predominantly unidirectional alignment of the fibers parallel to the loading direction. Unlike for ultra-high-performance concrete without fibers, a noticeable difference between cylinder and cube compressive strength could be observed in case of UHPFRC.
Related References:
1. Price, W. H., “Factors Influencing Concrete Strength,” ACI Journal Proceedings, V. 47, No. 2, Feb. 1951, pp. 417-432.
2. Neville, A. M., “A General Relation for Strengths of Concrete Specimens of Different Shapes and Sizes,” ACI Journal Proceedings, V. 63, No. 10, Oct. 1966, pp. 1095-1109.
3. Held, M., “Research Results Concerning the Properties of High-Strength Concrete (HSC),” Darmstadt Concrete: Annual Journal on Concrete and Concrete Structures, V. 5, Institute for Structural Concrete, Technical University of Darmstadt, Darmstadt, Germany, 1990, pp. 71-78.
4. Weibull, W., “A Statistical Theory of the Strength of Materials,” The Royal Swedish Institute for Engineering Research, No. 151, Generalstabens Litografiska Anstalts Förlag, Stockholm, Sweden, 1939, 45 pp.
5. Graybeal, B. A., and Davis, M., “Cylinder or Cube: Strength Testing of 80 to 200 MPa (11.6 to 29 ksi) Ultra-High-Performance Fiber Reinforced Concrete,” ACI Materials Journal, V. 105, No. 6, Nov.-Dec. 2008, pp. 603-609.
6. Fládr, J.; Broukalová, I.; and Bílý, P., “Determination of Conversion Factors for Compressive Strength of HPFRC Measured on Specimens of Different Dimensions,” Proceedings of the RILEM-fib-AFGC International Symposium on Ultra-High Performance Fibre-Reinforced Concrete (held in Marseille, France, Oct. 2013), RILEM Proceedings, PRO 87, RILEM Publications, Bagneux, France, 2013, pp. 731-738.
7. Ma, J., “Faserfreier Ultrahochfester Beton – Entwicklung und Materialeigenschaften,” PhD thesis, University of Leipzig, Leipzig, Germany, 2009, 254 pp. (in German)
8. Fehling, E.; Schmidt, M.; Walraven, J.; Leutbecher, T.; and Fröhlich, S., Ultra-High Performance Concrete UHPC: Fundamentals – Design – Examples, Ernst & Sohn, Berlin, Germany, 2014, 198 pp.
9. Riedel, P.; Leutbecher, T.; Piotrowski, S.; and Heese, C., “Ratios of Compressive Strengths of Ultra-High-Performance Concrete Specimens of Different Shapes and Sizes,” ACI Materials Journal, V. 116, No. 6, Nov. 2019, pp. 139-149. doi: 10.14359/51716983
10. Riedel, P.; Leutbecher, T.; Piotrowski, S.; and Heese, C., “Einfluss der Probekörpergeometrie auf die Ergebnisse von Druckfestigkeitsprüfungen an ultrahochfestem Beton,” Beton- und Stahlbetonbau, V. 113, No. 8, 2018, pp. 598-607. (in German) doi: 10.1002/best.201800027
11. Zhou, B., and Uchida, Y., “Influence of Flowability, Casting Time and Formwork Geometry on Fiber Orientation and Mechanical Properties of UHPFRC,” Cement and Concrete Research, V. 95, May, 2017, pp. 164-177. doi: 10.1016/j.cemconres.2017.02.017
12. Hadl, P.; Kim, H.; and Tue, N. V., “Investigations on the Scattering in the Post Cracking Tensile Behaviour of UHPFRC,” Proceedings of the Sixth International Conference on Structural Engineering, Mechanics and Computation (held in Cape Town, South Africa, Sept. 2016), Insights and Innovations in Structural Engineering, Mechanics and Computation, CRC Press, London, UK, 2016, pp. 1392-1397.
13. Hadl, P.; Henner, S.; Kim, H.; and Tue, N. V., “Experimental Investigations on the Scattering in the Post Cracking Tensile Behaviour of UHPFRC,” Proceedings of HiPerMat 2016 – 4th International Symposium on Ultra-High Performance Concrete and High Performance Materials (held in Kassel, Germany, March 2016), Structural Materials and Engineering Series, No. 27, Kassel University Press, Kassel, Germany, 2016, 8 pp.
14. Hadl, P., and Tue, N. V., “Einfluss der Faserzugabe auf die Streuung im Zugtragverhalten von Stahlfaserbeton,” Beton- und Stahlbetonbau, V. 111, No. 5, 2016, pp. 310-318. (in German) doi: 10.1002/best.201600002
15. Hadl, P.; Gröger, J.; and Tue, N. V., “Experimentelle Untersuchungen zur Streuung im Zugtragverhalten von Stahlfaserbeton,” Bautechnik, V. 92, No. 6, 2015, pp. 385-393. (in German) doi: 10.1002/bate.201500008
16. Leutbecher, T., and Rebling, J., “Predicting the Postcracking Strength of Ultra-High Performance Fiber Reinforced Concrete by Means of Three-Point Bending Tests According to EN 14651,” Structural Concrete, V. 20, No. 6, 2019, pp. 2081-2095. doi: 10.1002/suco.201900070
17. Ankay, B.; Metje, K.; Mönig, T.; Zhang, C.; and Leutbecher, T., “Ultrasonic Characterisation of Steel Fibre Orientation in Ultra-High Performance Concrete,” GMA/ITG-Fachtagung Sensoren und Messsysteme (held in Nürnberg, Germany, Jun. 2019), AMA Service GmbH, Wunstorf, Germany, 2019, pp. 310-317.
18. Kim, S. W.; Kang, S. T.; Park, J. J.; and Ryu, G. S., “Effect of Filling Method on Fibre Orientation & Dispersion and Mechanical Properties of UHPC,” Proceedings of the Second International Symposium on Ultra High Performance Concrete (held in Kassel, Germany, Mar. 2008), Structural Materials and Engineering Series, No. 10, Kassel University Press, Kassel, Germany, 2008, pp. 185-194.
19. Homrich, J., and Naaman, A. E., “Stress-Strain Properties of SIFCON in Compression,” Fiber Reinforced Concrete Properties and Applications, SP-105, American Concrete Institute, Farmington Hills, MI, 1987, pp. 283-304.
20. Bunje, K.; Dehn, F.; Droll, K.; Fehling, E.; Greiner, S.; Horvath, J.; Kleen, E.; Müller, C.; Reineck, K.-H.; Schachinger, I.; Schmidt, M.; Teichmann, M.; Teutsch, M.; Thiel, R.; and Tue, N. V., “Sachstandsbericht Ultrahochfester Beton,” Deutscher Ausschuss für Stahlbeton (German Committee for Structural Concrete), No. 561, Beuth, Berlin, Germany, 2008, 144 pp. (in German)
21. Fröhlich, S., and Schmidt, M., “Testing of Ultra-High Performance Concrete,” Structural Materials and Engineering Series, No. 22, Kassel University Press, Kassel, Germany, 2014, pp. 129-176.
22. Curbach, M., and Speck, K., “Zweiaxiale Druckfestigkeit von Ultrahochfestem Beton,” Beton- und Stahlbetonbau, V. 102, No. 10, 2007, pp. 664-673. (in German) doi: 10.1002/best.200700573
23. Schmidt, M.; Leutbecher, T.; Piotrowski, S.; and Wiens, U., “The German Guideline for Ultra-High Performance Concrete,” Proceedings of the AFGC-ACI-fib-RILEM International Conference on Ultra-High Performance Fibre-Reinforced Concrete (held in Montpellier, France, Oct. 2017), RILEM Proceedings, PRO 106, V. II, RILEM Publications, Paris, France, 2017, pp. 543-554.
24. Tue, N. V.; Henze, S.; Küchler, M.; Schenck, G.; and Wille, K., “Ein optoanalytisches Verfahren zur Bestimmung der Faserverteilung und -orientierung in stahlfaserverstärktem UHFB,” Beton- und Stahlbetonbau, V. 102, No. 10, 2007, pp. 674-680. (in German) doi: 10.1002/best.200700568
25. Wichmann, H.-J.; Holst, A.; and Budelmann, H., “Ein praxisgerechtes Messverfahren zur Bestimmung der Fasermenge und ‐orientierung im Stahlfaserbeton,” Beton- und Stahlbetonbau, V. 108, No. 12, 2013, pp. 822-834. (in German) doi: 10.1002/best.201300060
26. EN 12350-8, “Testing Fresh Concrete – Part 8: Self-Compacting Concrete – Slump-Flow Test,” European Committee for Standardization, Brussels, Belgium, July 2010, 9 pp.
27. EN 12390-1, “Testing Hardened Concrete – Part 1: Shape, Dimensions and Other Requirements for Specimens and Moulds,” European Committee for Standardization, Brussels, Belgium, Sept. 2012, 13 pp.
28. EN 12390-3, “Testing Hardened Concrete – Part 3: Compressive Strength of Test Specimens,” European Committee for Standardization, Brussels, Belgium, Feb. 2009, 19 pp.
29. EN 12390-4, Testing Hardened Concrete – Part 4: Compressive Strength – Specification for Testing Machines,” European Committee for Standardization, Brussels, Belgium, Apr. 2000, 17 pp.