Shear Experiments of Prestressed Concrete Bridge Girders

International Concrete Abstracts Portal

The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

  


Title: Shear Experiments of Prestressed Concrete Bridge Girders

Author(s): E. O. L. Lantsoght, G. Zarate, F. Zhang, M.-K. Park, Y. Yang, and H. Sliedrecht

Publication: Structural Journal

Volume: 118

Issue: 3

Appears on pages(s): 117-130

Keywords: bridge assessment; concrete bridges; flexure-shear; large-scale testing; prestressed concrete; shear; shear-compression; shear-tension

DOI: 10.14359/51729360

Date: 5/1/2021

Abstract:
For the assessment of existing slab-between-girder bridges, the shear capacity and failure mode are under discussion. Previous research showed that the static and fatigue punching capacity of the slabs is sufficient as a result of compressive membrane action. The girders then become the critical elements. This research studies the shear capacity of prestressed concrete bridge girders. For this purpose, four (half) girders were taken from an existing bridge that was scheduled for demolition and replacement and tested to failure in the laboratory. Two loading positions were studied. The results show that there should be a distinction between the mode of inclined cracking and the actual failure mode. In addition, the results show that for prestressed concrete girders, the influence of the shear span-depth ratio should be considered for shear span-depth ratios larger than 2.5. These insights can be used for the assessment of existing slab-between-girder bridges in the Netherlands.

Related References:

AASHTO, 2018, “AASHTO LRFD Bridge Design Specifications,” eighth edition, American Association of State Highway and Transportation Officials, Washington, DC.

ACI Committee 318, 2008, “Building Code Requirements for Structural Concrete (ACI 318-08) and Commentary,” American Concrete Institute, Farmington Hills, MI, 465 pp.

ACI Committee 318, 2019, “Building Code Requirements for Structural Concrete (ACI 318-19) and Commentary (ACI 318R-19),” American Concrete Institute, Farmington Hills, MI, 624 pp.

Amir, S., 2014, “Compressive Membrane Action in Prestressed Concrete Deck Slabs,” PhD thesis, Delft University of Technology, 317 pp.

Amir, S.; Van der Veen, C.; Walraven, J. C.; and de Boer, A., 2016, “Experiments on Punching Shear Behavior of Prestressed Concrete Bridge Decks,” ACI Structural Journal, V. 113, No. 3, May-June, pp. 627-636. doi: 10.14359/51688757

Arthur, P. D., 1965, “The Shear Strength of Pre-Tensioned I Beams with Unreinforced Webs,” Magazine of Concrete Research, V. 53, No. 17, pp. 199-210. doi: 10.1680/macr.1965.17.53.199

Bentz, E., 2010, “Response-2000 Manual,” University of Toronto, Toronto, ON, Canada.

Code Committee 351001, 2011a, “Assessement of Structural Safety of an Existing Structure at Repair or Unfit for Use—Basic Requirements, NEN 8700:2011,” Civil Center for the Execution of Research and Standardization, Dutch Normalisation Institute; Delft, The Netherlands, 56 pp. (in Dutch)

Code Committee 351001, 2011b, “Assessement of Structural Safety of an Existing Structure at Repair or Unfit for Use—Loads, NEN 8701:2011,” Civil Center for the Execution of Research and Standardization, Dutch Normalisation Institute; Delft, The Netherlands, 26 pp. (in Dutch)

CEN, 2005, “Eurocode 2: Design of Concrete Structures―Part 1-1 General Rules and Rules for Buildings. NEN-EN 1992-1-1:2005,” Comité Européen de Normalisation, Brussels, Belgium, 229 pp.

Collins, M. P., and Mitchell, D., 1991, Prestressed Concrete Structures, Englewood Cliffs; NJ: Prentice Hall.

Collins, M. P.; Xie, L.; Mihaylov, B. I.; and Bentz, E. C., 2016, “Shear Response of Prestressed Thin-Webbed Continuous Girders,” ACI Structural Journal, V. 113, No. 3, May-June, pp. 447-457.

De Oude Doos Groningen, 2020, “Helperzoom, Viaduct Zuidelijke Ringweg,” https://www.google.com/imgres?imgurl=https%3A%2F%2Flookaside.fbsbx.com%2Flookaside%2Fcrawler%2Fmedia%2F%3Fmedia_id%3D1224149744405323&imgrefurl=https%3A%2F%2Fwww.facebook.com%2FDeOudeDoosGroningen%2Fposts%2F1224153071071657&tbnid=wnWk8kwaNq8dMM&vet=12ahUKEwjc7aLj9r_oAhWSs6QKHfWUCqQQMygKegUIARDYAQ.i&docid=XdoDw-FVMDSOeM&w=960&h=726&q=helperzoom%20girder%20Groningen&ved=2ahUKEwjc7aLj9r_oAhWSs6QKHfWUCqQQMygKegUIARDYAQ.

De Wilder, K.; De Roeck, G.; and Vandewalle, L., 2018, “Experimental Analysis of the Shear Behaviour of Prestressed and Reinforced Concrete Beams,” European Journal of Environmental and Civil Engineering, V. 22, No. 3, pp. 288-314. doi: 10.1080/19648189.2016.1194321

Dunkelberg, D.; Sneed, L. H.; Zilch, K.; and Reineck, K.-H., 2018, “The 2015 ACI-DAfStb Database of Shear Tests on Slender Prestressed Concrete Beams Without Stirrups—Overview and Evaluation of Current Design Approaches,” Structural Concrete, V. 19, No. 6, pp. 1740-1759. doi: 10.1002/suco.201700216

Ensink, S. W. H.; Van der Veen, C.; and Hendriks, M. A. N., 2019, “Non-linear Analysis of Prestressed Concrete T-Beams,” SEMC 2019, Cape Town, South Africa.

Ensink, S. W. H.; Van der Veen, C.; Hordijk, D. A.; Lantsoght, E. O. L.; van der Ham, H.; and De Boer, A., 2018, “Full-Size Field Test of Prestressed Concrete T-Beam Bridge,” European Bridge Conference, Edinburgh, Scotland.

Herbrand, M., and Classen, M., 2015, “Shear Tests on Continuous Prestressed Concrete Beams with External Prestressing,” Structural Concrete, V. 16, No. 3, pp. 428-437. doi: 10.1002/suco.201400082

Herbrand, M.; Claßen, M.; and Adam, V., 2017, “Querkraftversuche an Spannbetondurchlaufträgern mit Rechteck- und I-Querschnitt/Shear Tests on Prestressed Concrete Continuous Beams with Rectangular and I-Shaped Cross-Sections,” Bauingenieur, V. 92, No. 11, pp. 465-473. doi: 10.37544/0005-6650-2017-11-51

Hicks, A. B., 1958, “The Influence of Shear Span and Concrete Strength Upon the Shear Resistance of a Pre-Tensioned Prestressed Concrete Beam,” Magazine of Concrete Research, V. 10, No. 30, pp. 115-122. doi: 10.1680/macr.1958.10.30.115

Higgs, A.; Barr, P. J.; and Halling, M. W., 2015, “Comparison of Measured and AASHTO LRFD-Predicted Residual Prestress Forces, Shear and Flexural Capacities of High-Strength Prestressed-Concrete Bridge Girders,” Journal of Bridge Engineering, ASCE, V. 20, No. 1, p. 05014009 doi: 10.1061/(ASCE)BE.1943-5592.0000646

Jayananda, N., 2018, “Shear Strengthening of Prestressed Concrete Beams with Ultra High-Performance Fiber Reinforced Composite (UHPFRC)—Numerical Analysis by ATENA Model,” PhD, Delft University of Technology, Delft, the Netherlands, 108 pp.

Kar, J. N., 1969, “Shear Strength of Prestressed Concrete Beams Without Web Reinforcement,” Magazine of Concrete Research, V. 21, No. 68, pp. 159-170. doi: 10.1680/macr.1969.21.68.159

Koekkoek, R. T.; van der Veen, C.; and de Boer, A., 2018, “Fatigue Tests on Post-Tensioned Bridge Decks,” fib Symposium 2017, pp. 912-920.

Kuchma, D., Kim, K. S., Nagle, T. J., Sun, S. and Hawkins, N. M., 2008, “Shear Tests on High-Strength Prestressed Bulb-Tee Girders: Strengths and Key Observations,” ACI Structural Journal, V. 105, No. 3, May-June, pp. 358-367.

Labib, E. L.; Dhonde, H. B.; Hsu, T. T. C.; and Mo, Y. L., 2014, “Shear Design of High Strength Concrete Prestressed Girders,” Frontiers of Structural and Civil Engineering, V. 8, No. 4, pp. 373-387.

Lantsoght, E. O. L.; Braam, C. R.; and van der Veen, C., 2019a, “Preparation of Shear Experiments on Prestressed Girders Helperzoom,” V. Stevin Report 25.5-19-01, Delft University of Technology, Delft, the Netherlands, 41 pp.

Lantsoght, E. O. L.; Koekkoek, R.; van der Veen, C.; and Sliedrecht, H., 2019b, “Fatigue Assessment of Prestressed Concrete Slab-Between-Girder Bridges,” Applied Sciences, V. 9, No. 11, pp. 2312.

Lantsoght, E. O. L.; Van der Veen, C.; Koekkoek, R. T.; and Sliedrecht, H., 2019c, “Punching Capacity of Prestressed Concrete Bridge Decks Under Fatigue,” ACI Structural Journal, V. 116, No. 4, July, pp. 209-218. doi: 10.14359/51715563

Lantsoght, E. O. L.; Van der Veen, C.; Koekkoek, R. T.; and Sliedrecht, H., 2019d, “Fatigue Testing of Transversely Prestressed Concrete Decks,” ACI Structural Journal, V. 116, No. 4, July, pp. 143-154. doi: 10.14359/51715569

Lantsoght, E. O. L.; Zhang, F.; Zarate Garnica, G. I.; Park, M. K.; Mustafa, S.; Braam, C. R.; and Yang, Y., 2020, “Analysis Report of Prestressed Beams from Helperzoom Viaduct,” Stevin Report 25.5-19-04, Delft University of Technology, Delft, the Netherlands, 158 pp.

Lantsoght, E. O. L.; Zhang, F.; Zarate Garnica, G. I.; Yang, Y.; and Braam, C. R., 2019e, “Measurement Report of Prestressed Beams from Helperzoom Viaduct,” Stevin Report 25.5-19-03, Delft University of Technology, Delft, the Netherlands, 75 pp.

Laskar, A.; Hsu, T. T. C.; and Mo, Y. L., 2010, “Shear Strengths of Prestressed Concrete Beams Part 1: Experiments and Shear Design Equations,” ACI Structural Journal, V. 107, No. 3, May-June, pp. 330-339.

Linthorst, F. G. A., and Teunissen, E. A. H., 2009, “BDX-9002 Materiaalonderzoek 64 kunstwerken: 07D-105-01 ‘Noordelijk Viaduct Over de Spoorlijn Assen-Groningen’,” Deventer, the Netherlands, 24 pp.

Mahgoub, M. O., 1975, “Shear Strength of Prestressed Concrete Beams Without Web Reinforcement,” Magazine of Concrete Research, V. 27, No. 93, pp. 219-228. doi: 10.1680/macr.1975.27.93.219

Martin, R. D.; Kang, T. H.-K.; and Pei, J.-S., 2011, “Experimental and Code Analyses for Shear Design of AASHTO Prestressed Concrete Girders,” PCI Journal, V. 56, No. 1, pp. 54-74. doi: 10.15554/pcij.01012011.54.74

Mattock, A. H., 1979, “Flexural Strength of Prestressed Concrete Sections by Programmable Calculator,” PCI Journal, V. 24, No. 1, pp. 32-54. doi: 10.15554/pcij.01011979.32.54

Movares, 2013, “Quick Scan T-Liggers 2013: 07D 105 Viaduct Helperzoom Volgens RBK Versie 1.1,” Utrecht, the Netherlands, 176 pp.

Oh, B. H., and Kim, K. S., 2004, “Shear Behavior of Full-Scale Post-Tensioned Prestressed Concrete Bridge Girders,” ACI Structural Journal, V. 101, No. 2, Mar.-Apr., pp. 176-182.

Osborn, G. P.; Barr, P. J.; Petty, D. A.; Halling, M. W.; and Brackus, T. R., 2012, “Residual Prestress Forces and Shear Capacity of Salvaged Prestressed Concrete Bridge Girders,” Journal of Bridge Engineering, ASCE, V. 17, No. 2, pp. 302-309. doi: 10.1061/(ASCE)BE.1943-5592.0000212

Osborn, P., 2010, “Ultimate Shear Capacity and Residual Prestress Force of Full-Scale, Forty-One-Year-Old Prestressed-Concrete Girders,” MSc thesis, Utah State University, UT, 163 pp.

Rijkswaterstaat, 2013, “Guidelines Assessment Bridges—Assessment of Structural Safety of an Existing Bridge at Reconstruction, Usage and Disapproval (in Dutch), RTD 1006:2013 1.1,” Utrecht, the Netherlands, 117 pp.

Roosen, M., 2018, “Shear Tension Resistance of Prestressed Beams—Literature Review,” Delft University of Technology, Delft, the Netherlands.

Roosen, M.; van der Veen, C.; and Hordijk, D., 2018, “Suitability of Shear Tension Code Requirements for the Assessment of Existing Structures Build-Up with Prestressed I- and T-Shape Girders,” fib Symposium 2017, pp. 786-793.

Roosen, M. A.; Van der Veen, C.; Hordijk, D. A.; and Hendriks, M. A. N., 2019a, “Shear Tension Resistance of Prestressed Girders with a Low Stirrup Ratio,” SEMC 2019, Cape Town, South Africa.

Roosen, M. A.; Van der Veen, C.; Hordijk, D. A.; and Hendriks, M. A. N., 2019b, “Resistance to Diagonal Tension Cracking of Single Span Prestressed Girders,” SEMC 2019, Cape Town, South Africa.

Ross, B. E.; Hamilton, H. R.; and Consolazio, G. R., 2015, “Experimental Study of End Region Detailing and Shear Behavior of Concrete I-Girders,” Journal of Bridge Engineering, V. 20, No. 6, p. 04014087 doi: 10.1061/(ASCE)BE.1943-5592.0000676

Scholz, H., 1990, “Ductility, Redistribution, and Hyperstatic Moments in Partially Prestressed Members,” ACI Structural Journal, V. 87, No. 3, May-June, pp. 341-349.

Schramm, N., and Fischer, O., 2019, “Influence of No Longer Permitted Stirrup Types on the Shear Capacity—Experimental Investigations on Prestressed Continuous Beam Subsystems,” SEMC 2019, Cape Town, South Africa.

Shahawy, M. A., and Batchelor, B., 1996, “Shear Behavior of Full-Scale Prestressed Concrete Girders: Comparison Between AASHTO Specifications and LRFD Code,” PCI Journal, V. 41, No. 3, pp. 48-62. doi: 10.15554/pcij.05011996.48.62

Shen, J.; Yurtdas, I.; Diagana, C.; and Li, A., 2015, “Experimental Investigation on the Shear Performance of Prestressed Self-Compacting Concrete Beams Without Stirrups,” Materials and Structures, V. 48, No. 5, May, pp. 1291-1302.

Vecchio, F. J., and Collins, M. P., 1986, “The Modified Compression-Field Theory for Reinforced Concrete Elements Subjected to Shear,” ACI Journal Proceedings, V. 83, No. 2, pp. 219-231.

Vergeer, M. C., 2019, “Shear Tension Resistance of Prestressed Concrete Beams with Shear Reinforcement—Based on the MCFT,” MSc thesis, Delft University of Technology, Delft, the Netherlands, pp.

Vill, M.; Torghele, H.; Brunner, H.; and Kollegger, J., 2011, “Zerstörende Belastungsversuche zur Untersuchung des Schubtragverhaltens von vorgespannten Trägern einer Straßenbrücke,” Beton- und Stahlbetonbau, V. 106, No. 4, pp. 241-249. doi: 10.1002/best.201000093

Zhang, F.; Zarate Garnica, G. I.; Yang, Y.; Lantsoght, E.; and Sliedrecht, H., “Monitoring Shear Behavior of Prestressed Concrete Bridge Girders Using Acoustic Emission and Digital Image Correlation,” Sensors, V. 20, No. 19, 2020, p. 5622. doi: 10.3390/s20195622

Zwicky, D., 2002, “Zur Tragfähigkeit stark vorgespannter Betonbalken,” PhD thesis, ETH Zürich, pp. 239.

Zwicky, D., and Vogel, T., 2000, “Bruchversuche an ausgebauten Brückenträgern aus Spannbeton,” ETH Zürich, Zürich, Switzerland, 172 pp.


ALSO AVAILABLE IN:

Electronic Structural Journal



  

Edit Module Settings to define Page Content Reviewer