Concrete Incorporating Glass Powder in Aggressive Environments

International Concrete Abstracts Portal

The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

  


Title: Concrete Incorporating Glass Powder in Aggressive Environments

Author(s): Ablam Zidol, Monique T. Tognonvi, and Arezki Tagnit-Hamou

Publication: Materials Journal

Volume: 118

Issue: 2

Appears on pages(s): 43-51

Keywords: aggressive environment; carbonation; chloride ions; glass powder; sulfate attack; sustainability

DOI: 10.14359/51729326

Date: 3/1/2021

Abstract:
It has been demonstrated in recent studies that, unlike general-use cement (GU), glass powder (GP) performs better in concrete mixtures with high water-binder ratios (w/b) in terms of both mechanical properties and chloride ion permeability. This paper aims to deepen investigations on the behavior of concrete incorporating GP in aggressive outdoor environments such as chloride ion diffusion, carbonation, and sulfates as a function of w/b. For comparison purposes, concretes containing conventional supplementary cementitious materials (SCMs) such as Class F fly ash (FFA) and ground-granulated blast-furnace slag (GGBFS) along with control concrete were also studied. In general, GP-based concretes behaved as those containing SCM. Indeed, despite their high w/b, concrete incorporating GP better withstands sulfate attack than the reference. This was mainly attributed to the low chloride permeability of such concretes. Also, as commonly observed with SCM concretes, carbonation was higher with GP-based concrete and increased with w/b.

Related References:

1. Al-Amoudi, O. S. B., “Performance of 15 Reinforced Concrete Mixtures in Magnesium-Sodium Sulphate Environments,” Construction and Building Materials, V. 9, No. 3, 1995, pp. 149-158. doi: 10.1016/0950-0618(95)00007-3

2. Ye, J. X.; Wang, Y. J.; Zhao, S.; Yang, M. C.; and Yang, C. H., “Effect of Ground Phosphate Slag on the Resistance to Chloride Ion Penetration of Concrete,” Advanced Materials Research, V. 194-196, Feb, 2011, pp. 924-929. doi: 10.4028/www.scientific.net/AMR.194-196.924

3. Bouzoubaâ, N., and Fournier, B., “Current Situation of SCMs in Canada,” Materials Technology Laboratory Report MTL 2003-4(TR), CANMET Energy Technology Centre, Montreal, QC, Canada, 2003, 55 pp.

4. Zidol, A.; Tognonvi, M. T.; and Tagnit-Hamou, A., “Effect of Glass Powder on Concrete Sustainability,” New Journal of Glass and Ceramics, V. 7, No. 2, 2017, pp. 34-47. doi: 10.4236/njgc.2017.72004

5. Idir, R.; Cyr, M.; and Tagnit-Hamou, A., “Role of the Nature of Reaction Products in the Differing Behaviours of Fine Glass Powders and Coarse Glass Aggregates Used in Concrete,” Materials and Structures, V. 46, No. 1-2, 2013, pp. 233-243. doi: 10.1617/s11527-012-9897-z

6. Omran, A. F.; D.-Morin, E.; Harbec, D.; and Tagnit-Hamou, A., “Long-Term Performance of Glass-Powder Concrete in Large-Scale Field Applications,” Construction and Building Materials, V. 135, 2017, pp. 43-58. doi: 10.1016/j.conbuildmat.2016.12.218

7. Schwarz, N.; Cam, H.; and Neithalath, N., “Influence of a Fine Glass Powder on the Durability Characteristics of Concrete and Its Comparison to Fly Ash,” Cement and Concrete Composites, V. 30, No. 6, 2008, pp. 486-496. doi: 10.1016/j.cemconcomp.2008.02.001

8. Nassar, R.-U.-D., and Soroushian, P., “Strength and Durability of Recycled Aggregate Concrete Containing Milled Glass as Partial Replacement for Cement,” Construction and Building Materials, V. 29, 2012, pp. 368-377. doi: 10.1016/j.conbuildmat.2011.10.061

9. Shi, C.; Wu, Y.; Riefler, C.; and Wang, H., “Characteristics and Pozzolanic Reactivity of Glass Powders,” Cement and Concrete Research, V. 35, No. 5, 2005, pp. 987-993. doi: 10.1016/j.cemconres.2004.05.015

10. Shayan, A., and Xu, A., “Value-Added Utilisation of Waste Glass in Concrete,” Cement and Concrete Research, V. 34, No. 1, 2004, pp. 81-89. doi: 10.1016/S0008-8846(03)00251-5

11. Shayan, A., and Xu, A., “Performance of Glass Powder as a Pozzolanic Material in Concrete: A Field Trial on Concrete Slabs,” Cement and Concrete Research, V. 36, No. 3, 2006, pp. 457-468. doi: 10.1016/j.cemconres.2005.12.012

12. Sales, R. B. C.; Sales, F. A.; Figueiredo, E. P.; dos Santos, W. J.; Mohallem, N. D. S.; and Aguilar, M. T. P., “Durability of Mortar Made with Fine Glass Powdered Particles,” Advances in Materials Science and Engineering, V. 2017, 2017, pp. 1-9. doi: 10.1155/2017/3143642

13. Baroghel-Bouny, V.; Chaussadent, T.; Croquette, G.; Divet, L.; Gawsewitch, J.; Godin, J.; Henry, D.; and Platret, G. V. G., “Caractéristiques Microstructurales et Propriétés Relatives à la Durabilité des Bétons—Méthodes de Mesure et d’Essais de Laboratoire,” Techniques et Méthodes des LPC—Méthodes d’essai, No. 58 LCPC, Paris, 2002, 88 pp. (in French)

14. Association Française pour la Construction et pour la Recherche et les Essais sur les Matériaux et les Constructions (AFPC-AFREM), “Essai de Carbonatation Accéléré, Mesure de l’Épaisseur du Béton Carbonaté,” Durabilité des bétons, Méthodes Recommandées pour la Mesure des Grandeurs Associées à la Durabilité, J. P. Ollivier, ed., Compte rendu des journées techniques AFPC-AFREM, Institut National des, Laboratoire Matériaux et Durabilité des Constructions, Toulouse, France, 1997, pp. 153-158.

15. Kinomura, K., and Baroghel-Bouny, V., “Pore Structure and Transport Properties of High-Volume Fly Ash Materials Used for Radioactive Waste Disposal Facilities,” RILEM Workshop on Long-Term Performance of Cementitious Barriers and Reinforced Concrete in Nuclear Power Plants and Waste Management (NUCPERF 2009), Cadarache, France, V. L’Hostis, R. Gens, and C. Gallé, eds., RILEM Publications SARL, Bagneux, France, 2009, pp. 109-117.

16. Liu, J.; Tang, K.; Qiu, Q.; Pan, D.; Lei, Z.; and Xing, F., “Experimental Investigation on Pore Structure Characterization of Concrete Exposed to Water and Chlorides,” Materials (Basel), V. 7, No. 9, 2014, pp. 6646-6659. doi: 10.3390/ma7096646

17. Dembovska, L.; Bajare, D.; Pundiene, I.; and Vitola, L., “Effect of Pozzolanic Additives on the Strength Development of High Performance Concrete,” Procedia Engineering, V. 172, Feb, 2017, pp. 202-210. doi: 10.1016/j.proeng.2017.02.050

18. Kim, S. K.; Kang, S. T.; Kim, J. K.; and Jang, I. Y., “Effects of Particle Size and Cement Replacement of LCD Glass Powder in Concrete,” Advances in Materials Science and Engineering, V. 2017, 2017, pp. 1-12. doi: 10.1155/2017/3928047

19. Hossain, M. M.; Karim, M. R.; Hasan, M.; Hossain, M. K.; and Zain, M. F. M., “Durability of Mortar and Concrete Made up of Pozzolans as a Partial Replacement of Cement: A Review,” Construction and Building Materials, V. 116, 2016, pp. 128-140. doi: 10.1016/j.conbuildmat.2016.04.147

20. Henocq, P., “Modeling of Ionic Interactions at the C-S-H Surface. Application to CsCl and LiCl Solutions in Comparison with NaCl Solutions,” Symposium, Second International RILEM Symposium on Advances in Concrete through Science and Engineering, Quebec City, QC, Canada, RILEM Publications SARL, Bagneux, France, 2006.

21. Leng, F.; Feng, N.; and Lu, X., “An Experimental Study on the Properties of Resistance to Diffusion of Chloride Ions of Fly Ash and Blast Furnace Slag Concrete,” Cement and Concrete Research, V. 30, No. 6, 2000, pp. 989-992. doi: 10.1016/S0008-8846(00)00250-7

22. Marriaga, J. M. L., and Claisse, P. A., “The Influence of the Blast Furnace Slag Replacement on Chloride Penetration in Concrete,” Ingenieria e Investigacion, V. 31, No. 2, 2011, pp. 38-47.

23. Aïtcin, P.-C., “Revue des propriétés les plus importantes de quelques constituants des BHP (in French),” Bétons Haute Performance, Eyrolles, Saint-Germain, Paris, France, 2001, pp. 133-203.

24. Neville, A. M., Propriétés des Bétons (in French), first edition, Eyrolles, Geodif, Paris, France, 2000, 824 pp.

25. Pakawat, S., and Uomoto, T., “Effect of Cyclic Exposure of Carbonation and Chloride on Corrosion of Reinforcing Steel in Concrete,” Seisan Kenkyu, V. 57, No. 2, 2005, pp. 103-106.

26. McPolin, D. O.; Basheer, P. A.; Long, A. E.; Grattan, K. T.; and Sun, T., “New Test Method to Obtain pH Profiles due to Carbonation of Concretes Containing Supplementary Cementitious Materials,” Journal of Materials in Civil Engineering, ASCE, V. 19, No. 11, 2007, pp. 936-946. doi: 10.1061/(ASCE)0899-1561(2007)19:11(936)

27. Lammertijn, S., and de Belie, N., “Porosity, Gas Permeability, Carbonation and Their Interaction in High-Volume Fly Ash Concrete,” Magazine of Concrete Research, V. 60, No. 7, 2008, pp. 535-545. doi: 10.1680/macr.2008.60.7.535

28. Eglinton, M., “Resistance of Concrete to Destructive Agencies,” Lea’s Chemistry of Cement and Concrete, Butterworth-Heinemann, Oxford, 1998, pp. 299-342.

29. Boyd, A. J., and Skalny, J., “Environmental Deterioration of Concrete,” WIT Transactions on State of the Art in Science and Engineering, WIT Press, Southampton, UK, V. 28, 2007, pp. 143-184.

30. Portland Cement Association. “Types and Causes of Concrete Deterioration,” Skokie, IL, 2002, pp. 1-16.

31. Barnett, S. J.; Halliwell, M. A.; Crammond, N. J.; Adam, C. D.; and Jackson, A. R. W., “Study of Thaumasite and Ettringite Phases Formed in Sulfate/Blast Furnace Slag Slurries Using XRD Full Pattern Fitting,” Cement and Concrete Composites, V. 24, No. 3-4, 2002, pp. 339-346. doi: 10.1016/S0958-9465(01)00085-3

32. Mejía de Gutiérrez, R., “Effect of Supplementary Cementing Materials on the Concrete Corrosion Control,” Revista de Metalurgia, V. 39, 2003, pp. 250-255. doi: 10.3989/revmetalm.2003.v39.iExtra.1127


ALSO AVAILABLE IN:

Electronic Materials Journal



  

Edit Module Settings to define Page Content Reviewer