Design of Alkali-Activated Slag-Fly Ash Concrete Mixtures Using Machine Learning

International Concrete Abstracts Portal

The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

  


Title: Design of Alkali-Activated Slag-Fly Ash Concrete Mixtures Using Machine Learning

Author(s): C. Gunasekera, W. Lokuge, M. Keskic, N. Raj, D. W. Law, and S. Setunge

Publication: Materials Journal

Volume: 117

Issue: 5

Appears on pages(s): 263-278

Keywords: alkali-activated concrete; artificial neural networks; compressive strength; mixture design; multivariate adaptive regression spline model

DOI: 10.14359/51727019

Date: 9/1/2020

Abstract:
So far, alkali-activated concrete has primarily focused on the effect of source material properties and ratio of mixture proportions on the compressive strength development. A little research has focused on developing a standard mixture design procedure for alkali-activated concrete for a range of compressive strength grades. This study developed a standard mixture design procedure for alkali-activated slag-fly ash (low-calcium, Class F) blended concrete using two machine learning techniques: artificial neural networks (ANN) and multivariate adaptive regression spline (MARS). The algorithm for the predictive model for concrete mixture design was developed using MATLAB programming environment by considering the five key input parameters: water/solid ratio, alkaline activator/ binder ratio, Na-Silicate/NaOH ratio, fly ash/slag ratio, and NaOH molarity. The targeted compressive strengths ranging from 25 to 45 MPa (3.63 to 6.53 ksi) at 28 days were achieved with laboratory testing using the proposed machine learning mixture design procedure. Thus, this tool has the capability to provide a novel approach for the design of slag-fly ash blended alkali-activated concrete grades matching to the requirements of in-place field constructions.

Related References:

1. “Demand for Cement Worldwide from 2016 to 2020, by Select Country,” Statista, https://www.statista.com/statistics/936095/global-cement-demand-by-country/.

2. Cement Concrete & Aggregates Australia, 2016, http://www.concrete.net.au/iMIS_Prod.

3. Mathew, G., and Joseph, B., “Flexural Behaviour of Geopolymer Concrete Beams Exposed to Elevated Temperatures,” Journal of Building Engineering, V. 15, 2018, pp. 311-317. doi: 10.1016/j.jobe.2017.09.009

4. Turner, L. K., and Collins, F. G., “Carbon Dioxide Equivalent (CO2-E) Emissions: A Comparison between Geopolymer and OPC Cement Concrete,” Construction and Building Materials, V. 43, No. 1, 2013, pp. 125-130. doi: 10.1016/j.conbuildmat.2013.01.023

5. Wardhono, A.; Gunasekara, C.; Law, D. W.; and Setunge, S., “Comparison of Long Term Performance between Alkali Activated Slag and Fly Ash Geopolymer Concretes,” Construction and Building Materials, V. 143, 2017, pp. 272-279. doi: 10.1016/j.conbuildmat.2017.03.153

6. Gunasekara, C.; Law, D. W.; Setunge, S.; and Sanjayan, J. G., “Zeta Potential, Gel Formation and Compressive Strength of Low Calcium Fly Ash Geopolymers,” Construction and Building Materials, V. 95, No. 1, 2015, pp. 592-599. doi: 10.1016/j.conbuildmat.2015.07.175

7. Diaz-Loya, E.; Allouche, E. N.; and Vaidya, S., “Mechanical Properties of Fly-Ash-Based Geopolymer Concrete,” ACI Materials Journal, V. 108, No. 3, May-June 2011, pp. 300-306.

8. Lim, C.-H.; Yoon, Y.-S.; and Kim, J.-H., “Genetic Algorithm in Mix Proportioning of High-Performance Concrete,” Cement and Concrete Research, V. 34, No. 3, 2004, pp. 409-420. doi: 10.1016/j.cemconres.2003.08.018

9. Camp, C. V.; Pezeshk, S.; and Hansson, H., “Flexural Design of Reinforced Concrete Frames Using a Genetic Algorithm,” Journal of Structural Engineering, ASCE, V. 129, No. 1, 2003, pp. 105-115. doi: 10.1061/(ASCE)0733-9445(2003)129:1(105)

10. Safarzadegan Gilan, S.; Bahrami Jovein, H.; and Ramezanianpour, A. A., “Hybrid Support Vector Regression–Particle Swarm Optimization for Prediction of Compressive Strength and RCPT of Concretes Containing Metakaolin,” Construction and Building Materials, V. 34, 2012, pp. 321-329. doi: 10.1016/j.conbuildmat.2012.02.038

11. Cheng, R.; Pomianowski, M.; Wang, X.; Heiselberg, P.; and Zhang, Y., “A New Method to Determine Thermophysical Properties of PCM-Concrete Brick,” Applied Energy, V. 112, 2013, pp. 988-998. doi: 10.1016/j.apenergy.2013.01.046

12. Nazari, A., and Pacheco Torgal, F., “Predicting Compressive Strength of Different Geopolymers by Artificial Neural Networks,” Ceramics International, V. 39, No. 3, 2013, pp. 2247-2257. doi: 10.1016/j.ceramint.2012.08.070

13. Bondar, D., The Use of Artifical Neural Networks to Predict Compressive Strength of Geopolymers, 2011.

14. Topçu, I. B., and Sarıdemir, M., “Prediction of Compressive Strength of Concrete Containing Fly Ash Using Artificial Neural Networks and Fuzzy Logic,” Computational Materials Science, V. 41, No. 3, 2008, pp. 305-311. doi: 10.1016/j.commatsci.2007.04.009

15. Lahoti, M.; Narang, P.; Tan, K. H.; and Yang, E.-H., “Mix Design Factors and Strength Prediction of Metakaolin-Based Geopolymer,” Ceramics International, V. 43, No. 14, 2017, pp. 11433-11441. doi: 10.1016/j.ceramint.2017.06.006

16. Nazari, A., and Sanjayan, J. G., “Modelling of Compressive Strength of Geopolymer Paste, Mortar and Concrete by Optimized Support Vector Machine,” Ceramics International, V. 41, No. 9, 2015, pp. 12164-12177. doi: 10.1016/j.ceramint.2015.06.037

17. Ferdous, W.; Manalo, A.; Khennane, A.; and Kayali, O., “Geopolymer Concrete-Filled Pultruded Composite Beams–Concrete Mix Design and Application,” Cement and Concrete Composites, V. 58, 2015, pp. 1-13. doi: 10.1016/j.cemconcomp.2014.12.012

18. Anuradha, R.; Sreevidya, V.; Venkatasubramani, R.; and Rangan, B. V., “Modified Guidelines for Geopolymer Concrete Mix Design Using Indian Standard,” Asian Journal of Civil Engineering (Building and Housing), V. 13, No. 3, 2012, pp. 353-364.

19. Khan, M., and Castel, A., “Effect of Mgo And Na2SiO3 on the Carbonation Resistance of Alkali Activated Slag Concrete,” Magazine of Concrete Research, V. 70, No. 13, 2018, pp. 685-692. doi: 10.1680/jmacr.17.00062

20. Rajamane, N.; Nataraja, M.; Dattatreya, J.; Lakshmanan, N.; and Sabitha, D., “Sulphate Resistance and Eco-Friendliness of Geopolymer Concretes,” Indian Concrete Journal, V. 86, No. 1, 2012, p. 13.

21. Prashanth, P.; Lakshmi, M. P.; and Manohar, G., “Experimental Study on Geopolymer Concrete,” International Journal of Creative Research Thoughts (IJCRT), V. 6, No. 1, 2018, pp. 309-312.

22. Nuccetelli, C.; Trevisi, R.; Ignjatović, I.; and Dragaš, J., “Alkali-Activated Concrete with Serbian Fly Ash and Its Radiological Impact,” Journal of Environmental Radioactivity, V. 168, 2017, pp. 30-37. doi: 10.1016/j.jenvrad.2016.09.002

23. Kumar, S. S.; Pazhani, K.; and Ravisankar, K., “Fracture Behaviour of Fibre Reinforced Geopolymer Concrete,” Current Science, V. 113, No. 1, 2017.

24. Chitrala, S.; Jadaprolu, G. J.; and Chundupalli, S., “Study and Predicting the Stress-Strain Characteristics of Geopolymer Concrete under Compression,” Case Studies in Construction Materials, 2018, pp. 172-192.

25. Sreenivasulu, C.; Ramakrishnaiah, A.; and Jawahar, J. G., “Mechanical Properties of Geopolymer Concrete Using Granite Slurry as Sand Replacement,” International Journal of Advances in Engineering and Technology, V. 8, No. 2, 2015, p. 83

26. Sreenivasulu, C.; Guru, J. J.; Sekhar, R. M. V.; and Pavan, K. D., “Effect of Fine Aggregate Blending on Short-Term Mechanical Properties of Geopolymer Concrete,” Asian Journal of Civil Engineering, V. 17, No. 5, 2016, pp. 537-550.

27. Jawahar, J. G., and Mounika, G., “Strength Properties of Fly Ash and GGBS Based Geo Polymer Concrete,” Asian Journal of Civil Engineering, V. 17, No. 1, 2016, pp. 127-135.

28. Abhilash, P.; Sashidhar, C.; and Reddy, I. R., “Strength Properties of Fly Ash and GGBS Based Geo-Polymer Concrete,” International Journal of ChemTech Research, 2016, pp. 974-4290.

29. Sreenivasulu, C.; Guru Jawahar, J.; and Sashidhar, C., “Predicting Compressive Strength of Geopolymer Concrete Using NDT Techniques,” Asian Journal of Civil Engineering, V. 19, No. 4, 2018, pp. 513-525. doi: 10.1007/s42107-018-0036-1

30. Pavani, P.; Roopa, A.; Jawahar, J. G.; and Sreenivasulu, C., “Investigation on Geopolymer Concrete Using Granite Slurry Powder as Partial Replacment of Fine Aggregate,” International Research Journal of Engineering and Technology, V. 3, No. 6, 2016.

31. VenkataKiran, P.; Jawahar, J. G.; Sashidhar, C.; and Sreenivasulu, C., “Flexural Studies on Fly Ash and GGBS Blended Reinforced Geopolymer Concrete Beams,” International Journal of Research and Scientific Innovation, V, 4, No. 8, Aug. 2017.

32. Ren, J.-R.; Chen, H.-G.; Sun, T.; Song, H.; and Wang, M.-S., “Flexural Behaviour of Combined FA/GGBFS Geopolymer Concrete Beams after Exposure to Elevated Temperatures,” Advances in Materials Science and Engineering, 2017.

33. Palankar, N.; Ravi Shankar, A.; and Mithun, B., “Investigations on Alkali-Activated Slag/Fly Ash Concrete with Steel Slag Coarse Aggregate for Pavement Structures,” The International Journal of Pavement Engineering, V. 18, No. 6, 2017, pp. 500-512. doi: 10.1080/10298436.2015.1095902

34. Farhan, N. A.; Sheikh, M. N.; and Hadi, M. N., “Engineering Properties of Ambient Cured Alkali-Activated Fly Ash–Slag Concrete Reinforced with Different Types of Steel Fiber,” Journal of Materials in Civil Engineering, ASCE, V. 30, No. 7, 2018, p. 04018142. doi: 10.1061/(ASCE)MT.1943-5533.0002333

35. Farhan, N. A.; Sheikh, M. N.; and Hadi, M. N., “Experimental Investigation on the Effect of Corrosion on the Bond between Reinforcing Steel Bars and Fibre Reinforced Geopolymer Concrete,” Elsevier, 2018.

36. Sashidhar, C.; Guru, J. J.; Neelima, C.; and Pavan, K. D., “Preliminary Studies on Self Compacting Geopolymer Concrete Using Manufactured Sand,” Asian Journal of Civil Engineering, V. 17, No. 3, 2016, pp. 277-288.

37. Karthik, A.; Sudalaimani, K.; and Vijaya Kumar, C.,, “Investigation on Mechanical Properties of Fly Ash-Ground Granulated Blast Furnace Slag Based Self Curing Bio-Geopolymer Concrete,” Construction and Building Materials, V. 149, 2017, pp. 338-349. doi: 10.1016/j.conbuildmat.2017.05.139

38. Ronad, A.; Karikatti, V.; and Dyavanal, S., “A Study on Mechanical Properties of Geopolymer Concrete Reinforced with Basalt Fiber,” International Journal of Research in Engineering and Technology, V. 5, No. 7, 2016, pp. 474-478. doi: 10.15623/ijret.2016.0507074

39. Krishnaraja, A.; Sathishkumar, N.; Kumar, T. S.; and Kumar, P. D., “Mechanical Behaviour of Geopolymer Concrete under Ambient Curing,” International Journal of Scientific Engineering and Technology, V. 3, No. 2, 2014, pp. 130-132.

40. Rafeet, A.; Vinai, R.; Soutsos, M.; and Sha, W., “Guidelines for Mix Proportioning of Fly Ash/GGBS Based Alkali Activated Concretes,” Construction and Building Materials, V. 147, 2017, pp. 130-142. doi: 10.1016/j.conbuildmat.2017.04.036

41. Valencia-Saavedra, W.; Mejía de Gutiérrez, R.; and Gordillo, M., “Geopolymeric Concretes Based on Fly Ash with High Unburned Content,” Construction and Building Materials, V. 165, 2018, pp. 697-706. doi: 10.1016/j.conbuildmat.2018.01.071

42. Valencia Saavedra, W. G.; Angulo, D. E.; and Mejia de Gutierrez, R., “Fly Ash Slag Geopolymer Concrete: Resistance to Sodium and Magnesium Sulfate Attack,” Journal of Materials in Civil Engineering, ASCE, V. 28, No. 12, 2016, p. 04016148. doi: 10.1061/(ASCE)MT.1943-5533.0001618

43. Valencia Saavedra, W. G., and de Gutiérrez, R. M., “Performance of Geopolymer Concrete Composed of Fly Ash after Exposure to Elevated Temperatures,” Construction and Building Materials, V. 154, 2017, pp. 229-235. doi: 10.1016/j.conbuildmat.2017.07.208

44. Junaid, M. T., “Properties of Ambient Cured Blended Alkali Activated Cement Concrete,” IOP Conference Series: Materials Science and Engineering, 2017.

45. Singh, B.; Rahman, M.; Paswan, R.; and Bhattacharyya, S., “Effect of Activator Concentration on the Strength, ITZ and Drying Shrinkage of Fly Ash/Slag Geopolymer Concrete,” Construction and Building Materials, V. 118, 2016, pp. 171-179. doi: 10.1016/j.conbuildmat.2016.05.008

46. Nath, P., and Sarker, P. K., “Fracture Properties of GGBFS-Blended Fly Ash Geopolymer Concrete Cured in Ambient Temperature,” Materials and Structures, V. 50, No. 1, 2017, p. 32 doi: 10.1617/s11527-016-0893-6

47. Nath, P., and Sarker, P. K., “Flexural Strength and Elastic Modulus of Ambient-Cured Blended Low-Calcium Fly Ash Geopolymer Concrete,” Construction and Building Materials, V. 130, 2017, pp. 22-31. doi: 10.1016/j.conbuildmat.2016.11.034

48. Deb, P. S.; Nath, P.; and Sarker, P. K., “The Effects of GGBFS Blending with Flyash and Activator Content on the Workability and Strength Properties of Geopolymer Concrete Cured at Ambient Temperature,” Materials & Design, V. 62, 2014, pp. 32-39. doi: 10.1016/j.matdes.2014.05.001

49. Fang, G.; Ho, W. K.; Tu, W.; and Zhang, M., “Workability and Mechanical Properties of Alkali-Activated Fly Ash-Slag Concrete Cured at Ambient Temperature,” Construction and Building Materials, V. 172, 2018, pp. 476-487. doi: 10.1016/j.conbuildmat.2018.04.008

50. Deb, P.; Nath, P.; and Sarker, P., “Properties of Fly Ash and Slag Blended Geopolymer Concrete Cured at Ambient Temperature,” New Developments in Structural Engineering and Construction, 2013, pp. 571-576.

51. Deb, P.; Nath, P.; and Sarker, P., “Sulphate Resistance of Slag Blended Fly Ash Based Geopolymer Concrete,” Concrete 2013: Proceedings of the 26th Biennial National Conference of the Concrete Institute of Australia, Concrete Institute of Australia, Sydney, Australia, 2013.

52. Vignesh, P., and Vivek, K., “An Experimental Investigation on Strength Parameters of Flyash Based Geopolymer Concrete with GGBS,” International Research Journal of Engineering and Technology, V. 2, No. 2, 2015.

53. Pandurangan, K.; Thennavan, M.; and Muthadhi, A., “Studies on Effect of Source of Flyash on the Bond Strength of Geopolymer Concrete,” Materials Today: Proceedings, V. 5, No. 5, 2018, pp. 12725-12733. doi: 10.1016/j.matpr.2018.02.256

54. Ushaa, T.; Anuradha, R.; and Venkatasubramani, G., “Performance of Self-Compacting Geopolymer Concrete Containing Different Mineral Admixtures,” Indian Journal of Engineering and Materials Sciences, V. 22, No. 4, Aug. 2015.

55. Ramineni, K.; Boppana, N. K.; and Ramineni, M., “Performance Studies on Self-Compacting Geopolymer Concrete at Ambient Curing Condition,” International Congress on Polymers in Concrete (ICPIC 2018), 2018.

56. Hadi, A. S.; Imon, A. R.; and Werner, M., “Detection of Outliers,” Wiley Interdisciplinary Reviews: Computational Statistics, V. 1, No. 1, 2009, pp. 57-70. doi: 10.1002/wics.6

57. Li, W.; Mo, W.; Zhang, X.; Squiers, J. J.; Lu, Y.; Sellke, E. W.; Fan, W.; DiMaio, J. M.; and Thatcher, J. E., “Outlier Detection and Removal Improves Accuracy of Machine Learning Approach to Multispectral Burn Diagnostic Imaging,” Journal of Biomedical Optics, V. 20, No. 12, 2015, pp. 1-9, 9.

58. Baskar, S.; Arockiam, L.; and Charles, S., “A Systematic Approach on Data Pre-Processing in Data Mining,” Compusoft, V. 2, No. 11, 2013, p. 335

59. Hampel, F. R., “A General Qualitative Definition of Robustness,” Annals of Mathematical Statistics, V. 42, No. 6, 1971, pp. 1887-1896. doi: 10.1214/aoms/1177693054

60. Cook, R. D., “Detection of Influential Observation in Linear Regression,” Technometrics, V. 19, No. 1, 1977, pp. 15-18.

61. Jagadeeswari, T.; Harini, N.; Satya Kumar, C.; and Tech, M., “Identification of Outliers by Cook’s Distance in Agriculture Datasets,” International Journal of Computational Science and Engineering, V. 2, 2013, pp. 2319-7242.

62. Nazari, A.; Khalaj, G.; Riahi, S.; Bohlooli, H.; and Kaykha, M. M., “Prediction Total Specific Pore Volume of Geopolymers Produced from Waste Ashes by ANFIS,” Ceramics International, V. 38, No. 4, 2012, pp. 3111-3120. doi: 10.1016/j.ceramint.2011.12.011

63. Bondar, D., “Use of a Neural Network to Predict Strength and Optimum Compositions of Natural Alumina-Silica-Based Geopolymers,” Journal of Materials in Civil Engineering, ASCE, V. 26, No. 3, 2014, pp. 499-503. doi: 10.1061/(ASCE)MT.1943-5533.0000829

64. Friedman, J. H., “Multivariate Adaptive Regression Splines,” Annals of Statistics, V. 19, No. 1, 1991, pp. 1-67. doi: 10.1214/aos/1176347963

65. Deo, R. C.; Samui, P.; and Kim, D., “Estimation of Monthly Evaporative Loss Using Relevance Vector Machine, Extreme Learning Machine and Multivariate Adaptive Regression Spline Models,” Stochastic Environmental Research and Risk Assessment, V. 30, No. 6, 2016, pp. 1769-1784. doi: 10.1007/s00477-015-1153-y

66. Samui, P., “Slope Stability Analysis Using Multivariate Adaptive Regression Spline,” Metaheuristics Water Geotechnical and Transport Engineering, V. 14, 2012, p. 327

67. Adamowski, J.; Fung Chan, H.; Prasher, S. O.; Ozga‐Zielinski, B.; and Sliusarieva, A., “Comparison of Multiple Linear and Nonlinear Regression, Autoregressive Integrated Moving Average, Artificial Neural Network, and Wavelet Artificial Neural Network Methods for Urban Water Demand Forecasting in Montreal, Canada,” Water Resources Research, V. 48, No. 1, 2012, doi: 10.1029/2010WR009945

68. Mansouri, I.; Ozbakkaloglu, T.; Kisi, O.; and Xie, T., “Predicting Behavior of FRP-Confined Concrete Using Neuro Fuzzy, Neural Network, Multivariate Adaptive Regression Splines and M5 Model Tree Techniques,” Materials and Structures, V. 49, No. 10, 2016, pp. 4319-4334. doi: 10.1617/s11527-015-0790-4

69. Boadu, F. K., “Rock Properties and Seismic Attenuation: Neural Network Analysis,” Pure and Applied Geophysics, V. 149, No. 3, 1997, pp. 507-524. doi: 10.1007/s000240050038

70. Kurup, P. U., and Dudani, N. K., “Neural Networks for Profiling Stress History of Clays from PCPT Data,” Journal of Geotechnical and Geoenvironmental Engineering, V. 128, No. 7, 2002, pp. 569-579. doi: 10.1061/(ASCE)1090-0241(2002)128:7(569)

71. Samui, P., and Dixon, B., “Application of Support Vector Machine and Relevance Vector Machine to Determine Evaporative Losses in Reservoirs,” Hydrological Processes, V. 26, No. 9, 2012, pp. 1361-1369. doi: 10.1002/hyp.8278

72. Neville, A. M., Properties of Concrete, fourth and final edition, standards updated to 2002, 1996, Harlow: Pearson Education Limited.

73. Duxson, P.; Fernández-Jiménez, A.; Provis, J.; Lukey, G.; Palomo, A.; and van Deventer, J., “Geopolymer Technology: The Current State of the Art,” Journal of Materials Science, V. 42, No. 9, 2007, pp. 2917-2933. doi: 10.1007/s10853-006-0637-z

74. AS 1141.5, “Methods for Sampling and Testing Aggregates, Method 5: Particle Density and Water Absorption of Fine Aggregate,” Standards Australia, Sydney, Australia, 2000, pp. 1-8.

75. AS 1012.9, “Method of Testing Concrete, Method 9: Determination of the Compressive Strength of Concrete Specimens,” Standards Australia, Sydney, Australia, 1999, pp. 1-12.

76. Gunasekara, C.; Law, D. W.; Setunge, S.; Burgar, I.; and Brkljaca, R., “Effect of Element Distribution on Strength in Fly Ash Geopolymers,” ACI Materials Journal, V. 114, No. 5, Sept.-Oct. 2017, doi: 10.14359/51689779

77. Diaz-Loya, E. I.; Allouche, E. N.; and Vaidya, S., “Mechanical Properties of Fly-Ash-Based Geopolymer Concrete,” ACI Materials Journal, V. 108, No. 3, May-June 2011, pp. 300-306.

78. Chindaprasirt, P.; Chareerat, T.; Hatanaka, S.; and Cao, T., “High-Strength Geopolymer Using Fine High-Calcium Fly Ash,” Journal of Materials in Civil Engineering, ASCE, V. 23, No. 3, 2011, pp. 264-270. doi: 10.1061/(ASCE)MT.1943-5533.0000161

79. Provis, J. L., “Geopolymers and Other Alkali Activated Materials: Why, How, and What?” Materials and Structures, V. 47, No. 1-2, 2014, pp. 11-25. doi: 10.1617/s11527-013-0211-5

80. Provis, J. L., and van Deventer, J. S. J., “Geopolymerisation Kinetics. 1. In Situ Energy-Dispersive X-Ray Diffractometry,” Chemical Engineering Science, V. 62, No. 9, 2007, pp. 2309-2317. doi: 10.1016/j.ces.2007.01.027

81. Duxson, P.; Provis, J. L.; Lukey, G. C.; and van Deventer, J. S. J., “The Role of Inorganic Polymer Technology in the Development of ‘Green Concrete’,” Cement and Concrete Research, V. 37, No. 12, 2007, pp. 1590-1597. doi: 10.1016/j.cemconres.2007.08.018

82. Dirgantara, R.; Gunasekara, C.; Law, D. W.; and Molyneaux, T. K., “Suitability of Brown Coal Fly Ash for Geopolymer Production,” Journal of Materials in Civil Engineering, ASCE, V. 29, No. 12, 2017, p. 04017247. doi: 10.1061/(ASCE)MT.1943-5533.0002093

83. Cho, Y.-K.; Yoo, S.-W.; Jung, S.-H.; Lee, K.-M.; and Kwon, S.-J., “Effect of Na2O Content, SiO2/Na2O Molar Ratio, and Curing Conditions on the Compressive Strength of FA-Based Geopolymer,” Construction and Building Materials, V. 145, 2017, pp. 253-260. doi: 10.1016/j.conbuildmat.2017.04.004

84. Gao, K.; Lin, K.-L.; Wang, D.; Hwang, C.-L.; Shiu, H.-S.; Chang, Y.-M.; and Cheng, T.-W., “Effects SiO2/Na2O Molar Ratio on Mechanical Properties and the Microstructure of Nano-SiO2 Metakaolin-Based Geopolymers,” Construction and Building Materials, V. 53, 2014, pp. 503-510. doi: 10.1016/j.conbuildmat.2013.12.003


ALSO AVAILABLE IN:

Electronic Materials Journal



  

Edit Module Settings to define Page Content Reviewer