Effect of Steel Fiber on Engineering Properties of Geopolymer Concrete

International Concrete Abstracts Portal

The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

  


Title: Effect of Steel Fiber on Engineering Properties of Geopolymer Concrete

Author(s): Nabeel A. Farhan, M. Neaz Sheikh, and Muhammad N. S. Hadi

Publication: Materials Journal

Volume: 117

Issue: 3

Appears on pages(s): 29-40

Keywords: ambient curing; engineering properties; geopolymer concrete (GPC); steel fiber

DOI: 10.14359/51724591

Date: 5/1/2020

Abstract:
The effects of aspect ratio and volume fraction of steel fibers on the engineering properties of ambient-cured geopolymer concrete (GPC) were investigated. Straight macro steel fibers with an aspect ratio of 65 and straight micro steel fibers with an aspect ratio of 30 were added into the GPC mixtures. The test results showed that the engineering properties of GPC significantly improved with the addition of 2% macro steel fibers and 2% micro steel fibers by volume. The stress-strain behavior of GPC changed from brittle to ductile with significant improvement in the post-peak behavior by the addition of steel fibers. The compressive strength of GPC increased significantly with the addition of low-aspect-ratio steel fibers and the indirect tensile strength, flexural strength, direct tensile strength, and double punch tensile strength of GPC increased significantly with the addition of high-aspect-ratio steel fibers.

Related References:

1. Rashad, A. M., “Alkali-Activated Metakaolin: A Short Guide for Civil Engineer—An Overview,” Construction and Building Materials, V. 41, 2013, pp. 751-765. doi: 10.1016/j.conbuildmat.2012.12.030

2. Ranjbar, N.; Mehrali, M.; Behnia, A.; Alengaram, U. J.; and Jumaat, M. Z., “Compressive Strength and Microstructural Analysis of Fly Ash/Palm Oil Fuel Ash Based Geopolymer Mortar,” Materials & Design, V. 59, 2014, pp. 532-539. doi: 10.1016/j.matdes.2014.03.037

3. Ismail, I.; Bernal, S. A.; Provis, J. L.; San Nicolas, R.; Brice, D. G.; Kilcullen, A. R.; Hamdan, S.; and van Deventer, J. S., “Influence of Fly Ash on the Water and Chloride Permeability of Alkali-Activated Slag Mortars and Concretes,” Construction and Building Materials, V. 48, 2013, pp. 1187-1201. doi: 10.1016/j.conbuildmat.2013.07.106

4. Bakharev, T., “Geopolymeric Materials Prepared Using Class F Fly Ash and Elevated Temperature Curing,” Cement and Concrete Research, V. 35, No. 6, 2005, pp. 1224-1232. doi: 10.1016/j.cemconres.2004.06.031

5. McLellan, B. C.; Williams, R. P.; Lay, J.; Van Riessen, A.; and Corder, G. D., “Costs and Carbon Emissions for Geopolymer Pastes in Comparison to Ordinary Portland Cement,” Journal of Cleaner Production, V. 19, No. 9-10, 2011, pp. 1080-1090. doi: 10.1016/j.jclepro.2011.02.010

6. Habert, G.; De Lacaillerie, J. D. E.; and Roussel, N., “An Environmental Evaluation of Geopolymer Based Concrete Production: Reviewing Current Research Trends,” Journal of Cleaner Production, V. 19, No. 11, 2011, pp. 1229-1238. doi: 10.1016/j.jclepro.2011.03.012

7. Nematollahi, B.; Sanjayan, J.; and Shaikh, F. U. A., “Strain Hardening Behavior of Engineered Geopolymer Composites: Effects of the Activator Combination,” Journal of the Australian Ceramic Society, V. 51, No. 1, 2015, pp. 54-60.

8. Li, Y.; Shen, L.; Mirmoghtadaei, R.; and Ai, L., “A Design of Experiment Approach to Study the Effects of Raw Material on the Performance of Geopolymer Concrete,” Advances in Civil Engineering Materials, V. 6, No. 1, 2017, pp. 526-549. doi: 10.1520/ACEM20160007

9. Deb, P. S.; Nath, P.; and Sarker, P. K., “The Effects of Ground Granulated Blast-Furnace Slag Blending with Fly Ash and Activator Content on the Workability and Strength Properties of Geopolymer Concrete Cured at Ambient Temperature,” Materials & Design, V. 62, 2014, pp. 32-39.

10. Bhutta, A.; Borges, P. H.; Zanotti, C.; Farooq, M.; and Banthia, N., “Flexural Behavior of Geopolymer Composites Reinforced with Steel and Polypropylene Macro Fibers,” Cement and Concrete Composites, V. 80, 2017, pp. 31-40. doi: 10.1016/j.cemconcomp.2016.11.014

11. Natali, A.; Manzi, S.; and Bignozzi, M. C., “Novel Fiber-Reinforced Composite Materials Based on Sustainable Geopolymer Matrix,” Procedia Engineering, V. 21, 2011, pp. 1124-1131. doi: 10.1016/j.proeng.2011.11.2120

12. Ng, T. S.; Amin, A.; and Foster, S. J., “The Behaviour of Steel-Fibre-Reinforced Geopolymer Concrete Beams in Shear,” Magazine of Concrete Research, V. 65, No. 5, 2013, pp. 308-318. doi: 10.1680/macr.12.00081

13. Shafigh, P.; Mahmud, H.; and Jumaat, M. Z., “Effect of Steel Fiber on the Mechanical Properties of Oil Palm Shell Lightweight Concrete,” Materials & Design, V. 32, No. 7, 2011, pp. 3926-3932. doi: 10.1016/j.matdes.2011.02.055

14. Hoseini, M.; Bindiganavile, V.; and Banthia, N., “The Effect of Mechanical Stress on Permeability of Concrete: A Review,” Cement and Concrete Composites, V. 31, No. 4, 2009, pp. 213-220. doi: 10.1016/j.cemconcomp.2009.02.003

15. Yazıcı, Ş.; İnan, G.; and Tabak, V., “Effect of Aspect Ratio and Volume Fraction of Steel Fiber on the Mechanical Properties of SFRC,” Construction and Building Materials, V. 21, No. 6, 2007, pp. 1250-1253. doi: 10.1016/j.conbuildmat.2006.05.025

16. Song, P. S., and Hwang, S., “Mechanical Properties of High-Strength Steel Fiber-Reinforced Concrete,” Construction and Building Materials, V. 18, No. 9, 2004, pp. 669-673. doi: 10.1016/j.conbuildmat.2004.04.027

17. Khaloo, A. R., and Kim, N., “Influence of Concrete and Fiber Characteristics on Behavior of Steel Fiber Reinforced Concrete under Direct Shear,” ACI Materials Journal, V. 94, No. 6, Nov.-Dec. 1997, pp. 592-601.

18. Ma, H. L.; Cui, C.; Li, X.; and Hu, S. L., “Study on Mechanical Properties of Steel Fiber Reinforced Autoclaved Lightweight Shell-Aggregate Concrete,” Materials & Design, V. 52, 2013, pp. 565-571. doi: 10.1016/j.matdes.2013.05.086

19. Le Hoang, A., and Fehling, E., “Influence of Steel Fiber Content and Aspect Ratio on the Uniaxial Tensile and Compressive Behavior of Ultra High Performance Concrete,” Construction and Building Materials, V. 153, 2017, pp. 790-806. doi: 10.1016/j.conbuildmat.2017.07.130

20. Ganesan, N.; Indira, P. V.; and Santhakumar, A., “Engineering Properties of Steel Fibre Reinforced Geopolymer Concrete,” Advances in Concrete Construction, V. 1, No. 4, 2013, pp. 305-318.

21. Shaikh, F. U. A., “Deflection Hardening Behaviour of Short Fibre Reinforced Fly Ash Based Geopolymer Composites,” Materials & Design, V. 50, 2013, pp. 674-682. doi: 10.1016/j.matdes.2013.03.063

22. Ranjbar, N.; Mehrali, M.; Mehrali, M.; Alengaram, U. J.; and Jumaat, M. Z., “High Tensile Strength Fly Ash Based Geopolymer Composite Using Copper Coated Micro Steel Fiber,” Construction and Building Materials, V. 112, 2016, pp. 629-638. doi: 10.1016/j.conbuildmat.2016.02.228

23. BASF Australia, “MasterGlenium SKY 8100 - High Range Water Reducing/Superplasticising Admixture,” Alona, Australia, www.master-builders-solutions.basf.com.au/en-au/products/mastergleniumsky/masterglenium-sky-8100, 2018. (last accessed Apr. 28, 2020)

24. Ganzhou Daye Metallic Fibres Company. http://www.gzdymf.com/product/WSF_Steel_Fiber.html, 2018. (last accessed July 2018)

25. Hadi, M. N. S.; Farhan, N. A.; and Sheikh, M. N., “Design of Geopolymer Concrete with GGBFS at Ambient Curing Condition Using Taguchi Method,” Construction and Building Materials, V. 140, 2017, pp. 424-431. doi: 10.1016/j.conbuildmat.2017.02.131

26. AS 1012.3.1-1998, “Methods of Testing Concrete – Method 9: Determination of Properties Related to the Consistency of Concrete – Slump Test,” Standards Australia, Sydney, Australia, 1999.

27. AS 1012.9-1999, “Methods of Testing Concrete. Method 9: Determination of the Compressive Strength of Concrete Specimens,” Standards Australia, Sydney, Australia, 1999.

28. AS 1012.10-2000, “Methods of Testing Concrete - Determination of Indirect Tensile Strength of Concrete Cylinders (Brasil or Splitting Test),” Standards Australia, Sydney, Australia, 2000.

29. AS 1012.11-2000, “Methods of Testing Concrete - Determination of the Modulus of Rupture,” Standards Australia, Sydney, Australia, 2000.

30. Alhussainy, F.; Hasan, H. A.; Rogic, S.; Sheikh, M. N.; and Hadi, M. N. S., “Direct Tensile Testing of Self-Compacting Concrete,” Construction and Building Materials, V. 112, 2016, pp. 903-906. doi: 10.1016/j.conbuildmat.2016.02.215

31. Goaiz, H. A.; Farhan, N. A.; Sheikh, M. N.; Yu, T.; and Hadi, M. N. S., “Experimental Evaluation of Tensile Strength Test Methods for Steel Fibre Reinforced Concrete,” Magazine of Concrete Research, V. 65, No. 5, 2018, pp. 308-318.

32. Chen, W. F., and Yuan, R. L., “Tensile Strength of Concrete: Double-Punch Test,” Journal of the Structural Division, ASCE, V. 106, No. 8, 1980, pp. 1673-1693.

33. AS 1012.17-2014, “Methods of Testing Concrete - Determination of the Static Chord Modulus of Elasticity and Poisson’s Ratio of Concrete Specimens,” Standards Australia, Sydney, Australia, 2014.

34. Ou, Y. C.; Tsai, M. S.; Liu, K. Y.; and Chang, K. C., “Compressive Behavior of Steel-Fiber-Reinforced Concrete with a High Reinforcing Index,” Journal of Materials in Civil Engineering, ASCE, V. 24, No. 2, 2012, pp. 207-215. doi: 10.1061/(ASCE)MT.1943-5533.0000372

35. Bhargava, P.; Sharma, U. K.; and Kaushik, S. K., “Compressive Stress-Strain Behavior of Small-Scale Steel Fibre Reinforced High Strength Concrete Cylinders,” Journal of Advanced Concrete Technology, V. 4, No. 1, 2006, pp. 109-121. doi: 10.3151/jact.4.109

36. Atiş, C. D., and Karahan, O., “Properties of Steel Fiber Reinforced Fly Ash Concrete,” Construction and Building Materials, V. 23, No. 1, 2009, pp. 392-399. doi: 10.1016/j.conbuildmat.2007.11.002

37. Yusof, M. A.; Nor, N. M.; Zain, M. F. M.; Peng, N. C.; Ismail, A.; Sohaimi, R. M.; and Zaidi, A. M. A., “Mechanical Properties of Hybrid Steel Fibre Reinforced Concrete with Different Aspect Ratio,” Australian Journal of Basic and Applied Sciences, V. 5, No. 7, 2011, pp. 159-166.

38. Kim, D. J.; Park, S. H.; Ryu, G. S.; and Koh, K. T., “Comparative Flexural Behavior of Hybrid Ultra-High Performance Fiber Reinforced Concrete with Different Macro Fibers,” Construction and Building Materials, V. 25, No. 11, 2011, pp. 4144-4155. doi: 10.1016/j.conbuildmat.2011.04.051

39. Park, S. H.; Kim, D. J.; Ryu, G. S.; and Koh, K. T., “Tensile Behavior of Ultra-High-Performance Hybrid Fiber Reinforced Concrete,” Cement and Concrete Composites, V. 34, No. 2, 2012, pp. 172-184. doi: 10.1016/j.cemconcomp.2011.09.009

40. Wafa, F. F., and Ashour, S. A., “Mechanical Properties of High-Strength Fiber Reinforced Concrete,” ACI Materials Journal, V. 89, No. 5, Sept.-Oct. 1992, pp. 449-455.

41. Atiş, C. D.; Bilim, C.; Çelik, Ö.; and Karahan, O., “Influence of Activator on the Strength and Drying Shrinkage of Alkali-Activated Slag Mortar,” Construction and Building Materials, V. 23, No. 1, 2009, pp. 548-555. doi: 10.1016/j.conbuildmat.2007.10.011

42. Lee, N. K., and Lee, H. K., “Setting and Mechanical Properties of Alkali-Activated Fly Ash/Slag Concrete Manufactured at Room Temperature,” Construction and Building Materials, V. 47, 2013, pp. 1201-1209. doi: 10.1016/j.conbuildmat.2013.05.107

43. ACI Committee 318, “Building Code Requirements for Structural Concrete (ACI 318-11) and Commentary (ACI 318R-11),” American Concrete Institute, Farmington Hills, MI, 2011, 503 pp.

44. Nataraja, M. C.; Dhang, N.; and Gupta, A. P., “Stress-Strain Curves for Steel-Fiber Reinforced Concrete under Compression,” Cement and Concrete Composites, V. 21, No. 5-6, 1999, pp. 383-390.

45. Toufigh, V.; Abyaneh, M. J.; and Jafari, K., “Study of Behavior of Concrete under Axial and Triaxial Compression,” ACI Materials Journal, V. 114, No. 4, July-Aug. 2017, pp. 619-629. doi: 10.14359/51689716

46. Poon, C. S.; Shui, Z. H.; and Lam, L., “Compressive Behavior of Fiber Reinforced High-Performance Concrete Subjected to Elevated Temperatures,” Cement and Concrete Research, V. 34, No. 12, 2004, pp.  2215-2222.

47. Ezeldin, A. S., and Balaguru, P. N., “Normal- and High-Strength Fiber-Reinforced Concrete under Compression,” Journal of Materials in Civil Engineering, ASCE, V. 4, No. 4, 1992, pp. 415-429. doi: 10.1061/(ASCE)0899-1561(1992)4:4(415)


ALSO AVAILABLE IN:

Electronic Materials Journal



  

Edit Module Settings to define Page Content Reviewer