Compression Field Analysis of Fiber-Reinforced Concrete Based on the Cracked Membrane Model

International Concrete Abstracts Portal

The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

  


Title: Compression Field Analysis of Fiber-Reinforced Concrete Based on the Cracked Membrane Model

Author(s): Walter Kaufmann, Jaime Mata-Falcón, and Ali Amin

Publication: Structural Journal

Volume: 116

Issue: 5

Appears on pages(s): 213-224

Keywords: compression field approaches; fiber-reinforced concrete; in-plane shear and normal forces; load-deformation analysis; plane stress; shear strength

DOI: 10.14359/51716763

Date: 9/1/2019

Abstract:
Compression field approaches are well-established methods used to analyze the load-deformation behavior of reinforced concrete elements subjected to in-plane shear and normal forces. In this paper, the simplified Cracked Membrane Model, considering rotating, stress-free cracks, is extended to include the effect of fiber reinforcement. The key advantage of the proposed compression field approach is that it yields the most important factors for the design and analysis of fiber-reinforced concrete (FRC)—that is, crack opening and spacing—directly. A solution procedure is developed herein for two practical design cases for webs of girders without conventional shear reinforcement. In both cases, the applied load can typically be increased after cracking even when using strain softening FRC. The model is shown to predict the response of available test data on uniaxially reinforced FRC panels satisfactorily, but fails to capture failures governed by sliding of cracks in elements containing high fiber dosages.

Related References:

1. Voo, Y. L.; Foster, S. J.; and Voo, C. C., “Ultrahigh-Performance Concrete Segmental Bridge Technology: Toward Sustainable Bridge Construction,” Journal of Bridge Engineering, ASCE, V. 20, No. 8, Aug. 2015, p. B5014001-1:12. doi: 10.1061/(ASCE)BE.1943-5592.000070410.1061/(ASCE)BE.1943-5592.0000704

2. AS 3600:2018, “Concrete Structures,” Standards Australia, Sydney, NSW, Australia, 2018, 259 pp.

3. Pfyl, T., “Tragverhalten von Stahlfaserbeton,” PhD thesis, Institute of Structural Engineering, ETH Zurich, Zurich, Switzerland, 2003.

4. Dancygier, A. N., and Berkover, E., “Cracking Localization and Reduced Ductility in Fiber-Reinforced Concrete Beams with Low Reinforcement Ratios,” Engineering Structures, V. 111, Mar. 2016, pp. 411-424. doi: 10.1016/j.engstruct.2015.11.046

5. Marti, P.; Alvarez, M.; Kaufmann, W.; and Sigrist, V., “Tension Chord Model for Structural Concrete,” Structural Engineering International, V. 8, No. 4, 1998, pp. 287-298. doi: 10.2749/101686698780488875

6. Alvarez, M., and Marti, P., “Versuche zum Verbundverhalten von Bewehrungsstahl bei plastischen Verformungen,” Institute of Structural Engineering, ETH Zurich, Zurich, Switzerland, 1996, 135 pp. doi: 10.3929/ethz-a-00168561910.3929/ethz-a-001685619

7. Sigrist, V., and Marti, P., “Versuche zum Verformungsvermögen von Stahlbetonträgern,” Institute of Structural Engineering, ETH Zurich, Zurich, Switzerland, 1993, 90 pp.

8. Kaufmann, W., and Marti, P., “Versuche an Stahlbetonträgern unter Normal- und Querkraft,” Institute of Structural Engineering, ETH Zurich, Zurich, Switzerland, 1996. doi: 10.3929/ethz-a-00173490310.3929/ethz-a-001734903

9. Rupf, M., “Querkraftwiderstand von Stahlbeton- und Spannbetonträgern mittels Spannungsfeldern.” PhD thesis, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland, 2014.

10. Angelakos, D.; Bentz, E. C.; and Collins, M. P., “Effect of Concrete Strength and Minimum Stirrups on Shear Strength of Large Members,” ACI Structural Journal, V. 98, No. 3, May-June 2001, pp. 290-300. doi: 10.14359/10220

11. Rahal, K. N., and Al-Shaleh, K. S., “Minimum Transverse Reinforcement in 65 Mpa Concrete Beams,” ACI Structural Journal, V. 101, No. 6, Nov.-Dec. 2004, pp. 872-878. doi: 10.14359/13463

12. Minelli, F., “Plain and Fiber Reinforced Concrete Beams under Shear Loading: Structural Behavior and Design Aspects,” PhD thesis, Department of Civil Engineering, University of Brescia, Brescia, Italy, 2005.

13. Susetyo, J., “Fibre Reinforcement for Shrinkage Crack Control in Prestressed, Precast Segmental Bridges,” PhD thesis, Department of Civil Engineering, University of Toronto, Toronto, ON, Canada, 2010.

14. Adebar, P.; Mindess, S.; St.-Pierre, D.; and Olund, B., “Shear Tests of Fiber Concrete Beams without Stirrups,” ACI Structural Journal, V. 94, No. 1, Jan.-Feb. 1997, pp. 68-76. doi: 10.14359/462

15. Aoude, H.; Belghiti, M.; Cook, W. D.; and Mitchell, D., “Response of Steel Fiber-Reinforced Concrete Beams with and without Stirrups,” ACI Structural Journal, V. 109, No. 3, May-June 2012, pp. 359-368. doi: 10.14359/51683749

16. AS 5100.5:2017, “Bridge Design Part 5: Concrete,” Standards Australia, Sydney, NSW, Australia, 2017, 223 pp.

17. NZS 3101, “Concrete Structures Standard Part 2 – Commentary on the Design of Concrete Structures,” Standards New Zealand, Wellington, New Zealand, 2006, 391 pp.

18. ACI Committee 318, “Building Code Requirements for Structural Concrete (ACI 318-08) and Commentary,” American Concrete Institute, Farmington Hills, MI, 2008, 473 pp.

19. International Federation for Structural Concrete, “fib Model Code for Concrete Structures 2010,” Ernst & Sohn, Berlin, Germany, 2013, 402 pp.

20. Bentz, E. C., “MC2010: Shear Strength of Beams and Implications of the New Approaches,” Recent Developments on Shear and Punching Shear on RC and FRC Elements, International Federation for Structural Concrete, Lausanne, Switzerland, 2010, pp. 15-30.

21. Foster, S. J., “Design of FRC Beams for Shear Using the VEM and the Draft Model Code Approach,” Recent Developments on Shear and Punching Shear on RC and FRC Elements, International Federation for Structural Concrete, Lausanne, Switzerland, 2010. pp. 15-30.

22. EN 1992-1-1, “Eurocode 2: Design of Concrete Structures - Part 1-1: General Rules and Rules for Buildings,” European Committee for Standardization, Brussels, Belgium, 2004, 230 pp.

23. Kaufmann, W., “Strength and Deformations of Structural Concrete Subjected to In-Plane Shear and Normal Forces,” PhD thesis, Institute of Structural Engineering, ETH Zurich, Zurich, Switzerland, 1998.

24. Kaufmann, W., and Marti, P., “Structural Concrete: Cracked Membrane Model,” Journal of Structural Engineering, ASCE, V. 124, No. 12, Dec. 1998, pp. 1467-1475. doi: 10.1061/(ASCE)0733-9445(1998)124:12(1467)

25. Kupfer, H., “Erweiterung der Mörsch’schen Fachwerkanalogie mit Hilfe des Prinzips vom Minimum der Formänderungsenergie,” CEB Bulletin d’information, No. 40, 1964, pp. 44-57.

26. Collins, M. P., “Towards a Rational Theory for RC Members in Shear,” Journal of the Structural Division, ASCE, V. 104, No. 4, 1978, pp. 649-666.

27. Baumann, T., “Zur Frage der Netzbewehrung von Flächentragwerken,” Bauingenieur, V. 47, No. 10, 1972, pp. 367-377.

28. Mitchell, D., and Collins, M. P., “Diagonal Compression Field Theory—A Rational Model for Structural Concrete in Pure Torsion,” ACI Journal Proceedings, V. 71, No. 8, Aug. 1974, pp. 396-408. doi: 10.14359/7103

29. Vecchio, F. J., and Collins, M. P., “The Modified Compression-Field Theory for Reinforced Concrete Elements subjected to Shear,” ACI Journal Proceedings, V. 83, No. 2, Mar.-Apr. 1986, pp. 219-231. doi: 10.14359/10416

30. Kaufmann, W.; Mata-Falcón, J.; and Beck, A., “Future Directions for Research on Shear in Structural Concrete,” fib Bulletin 85: Towards a Rational Understanding of Shear in Beams and Slabs, 2018, pp. 323-338.

31. Hsu, T. T. C., “Softened Truss Model Theory for Shear and Torsion,” ACI Structural Journal, V. 85, No. 6, Nov.-Dec. 1988, pp. 624-635. doi: 10.14359/2740

32. Vecchio, F. J., “Disturbed Stress Field Model for Reinforced Concrete: Formulation,” Journal of Structural Engineering, ASCE, V. 126, No. 9, 2000, pp. 1070-1077. doi: 10.1061/(ASCE)0733-9445(2000)126:9(1070)

33. Foster, S. J., and Marti, P., “Cracked Membrane Model: Finite Element Implementation,” Journal of Structural Engineering, ASCE, V. 129, No. 9, 2003, pp. 1155-1163. doi: 10.1061/(ASCE)0733-9445(2003)129:9(1155)

34. Pimentel, M., and Figueiras, J., “Model for the Analysis of Structural Concrete Elements under Plane Stress Conditions: FE Implementation,” Computational Modelling of Concrete Structures, CRC Press, Boca Raton, FL, 2010, pp. 391-400.

35. Thoma, K.; Roos, P.; and Weber, M., “Finite-Elemente-Analyse von Stahlbetonbauteilen im ebenen Spannungszustand,” Beton- und Stahlbetonbau, V. 109, No. 4, 2014, pp. 275-283. doi: 10.1002/best.201300087

36. Seelhofer, H., “Ebener Spannungszustand im Betonbau: Grundlagen und Anwendungen.” PhD thesis, Institute of Structural Engineering, ETH Zurich, Zurich, Switzerland, 2009.

37. Karagiannis, D., and Kaufmann, W., “Capacity Assessment of Concrete Box-Girder Bridge Webs against the Combined Action of In-plane Shear and Transverse Bending,” High Tech Concrete: Where Technology and Engineering Meet, Hordijk, D. A., Luković, M., eds., Springer, Maastricht, the Netherlands, 2018, pp. 693-700.

38. Thoma, K., “Finite Element Analysis of Experimentally Tested RC and PC Beams Using the Cracked Membrane Model,” Engineering Structures, V. 167, July 2018, pp. 592-607. doi: 10.1016/j.engstruct.2018.04.010

39. Kaufmann, W., and Mata-Falcón, J., “Crack Widths in Structural Concrete Subjected to In-Plane Loading,” Workshop Proceedings No. 12, Nordic Concrete Federation, Oslo, Norway, 2017, pp. 21-25.

40. Marti, P.; Pfyl, T.; Sigrist, V.; and Ulaga, T., “Harmonized Test Procedures for Steel Fiber-Reinforced Concrete,” ACI Materials Journal, V. 96, No. 6, Nov.-Dec. 1999, pp. 676-685. doi: 10.14359/794

41. Amin, A.; Foster, S. J.; Gilbert, R. I.; and Kaufmann, W., “Material Characterisation of Macro Synthetic Fibre Reinforced Concrete,” Cement and Concrete Composites, V. 84, Nov. 2017, pp. 124-133. doi: 10.1016/j.cemconcomp.2017.08.018

42. Ng, T. S.; Htut, T.; and Foster, S., “Fracture of Steel Fibre Reinforced Concrete—The Unified Variable Engagement Model,” School of Civil and Environmental Engineering, University of New South Wales, Sydney, Australia, 2012, 107 pp.

43. Lee, S.-C.; Cho, J.-Y.; and Vecchio, F. J., “Diverse Embedment Model for Steel Fiber-Reinforced Concrete in Tension: Model Development,” ACI Materials Journal, V. 108, No. 5, Sept.-Oct. 2011, pp. 516-525. doi: 10.14359/51683261

44. Foster, S. J., “On Behavior of High-Strength Concrete Columns: Cover Spalling, Steel Fibers, and Ductility,” ACI Structural Journal, V. 98, No. 4, July-Aug. 2001, pp. 583-589. doi: 10.14359/10301

45. Amin, A., and Foster, S. J., “Shear Strength of Steel Fibre Reinforced Concrete Beams with Stirrups,” Engineering Structures, V. 111, 2016, pp. 323-332. doi: 10.1016/j.engstruct.2015.12.026

46. Deluce, J. R., “Cracking Behaviour of Steel Fibre Reinforced Concrete Containing Conventional Steel Reinforcement,” MSc dissertation, Department of Civil Engineering, University of Toronto, Toronto, ON, Canada, 2011.

47. Amin, A., “Post Cracking Behaviour of Steel Fibre Reinforced Concrete: From Material to Structure,” PhD thesis, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW, Australia, 2015.

48. Susetyo, J.; Gauvreau, P.; and Vecchio, F. J., “Steel Fiber-Reinforced Concrete Panels in Shear: Analysis and Modeling,” ACI Structural Journal, V. 110, No. 2, Mar.-Apr. 2013, pp. 285-296. doi: 10.14359/51684408

49. Walraven, J. C., “Fundamental Analysis of Aggregate Interlock,” Journal of the Structural Division, ASCE, V. 107, No. 11, 1981, pp. 2245-2270.

50. Lee, S.-C.; Cho, J.-Y.; and Vecchio, F. J., “Analysis of Steel Fiber-­Reinforced Concrete Elements Subjected to Shear,” ACI Structural Journal, V. 113, No. 2, Mar.-Apr. 2016, pp. 275-285. doi: 10.14359/51688474


ALSO AVAILABLE IN:

Electronic Structural Journal



  

Edit Module Settings to define Page Content Reviewer