Thermal Treatment and Pozzolanic Activity of Calcined Clay and Shale

International Concrete Abstracts Portal

The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

  


Title: Thermal Treatment and Pozzolanic Activity of Calcined Clay and Shale

Author(s): E. F. Irassar, A. Tironi, V. L. Bonavetti, M. A. Trezza, C. C. Castellano, V. F. Rahhal, H. A. Donza, and A. N. Scian

Publication: Materials Journal

Volume: 116

Issue: 4

Appears on pages(s): 133-143

Keywords: calcined clays; calcined shale; illite; kaolin; pozzolan; pozzolanic index; smectite; thermal treatment

DOI: 10.14359/51716717

Date: 7/1/2019

Abstract:
Clay minerals are the most abundant raw materials for calcined pozzolans. Thermal transformation includes dehydration, dehydroxylation, mineral collapse, and neo-formation. Depending on the type and amount of clay mineral, and the nature and amount of associated minerals, the thermal treatment determines the pozzolanic activity. In this paper, 10 natural shales or clays (six illite, two kaolin, and two loess) from Buenos Aires Province (Argentina) were identified using X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), and thermogravimetry (TG). The thermal transformation was checked by XRD or FTIR and the electrical conductivity (EC) at the calcination window. The pozzolanic activity was evaluated using the Frattini test and strength activity index (SAI). The Frattini test gives positive results after 7 days and SAI is greater than 0.90 at 28 days, but the compressive strength development depends on main clay mineral. The EC was effective to evaluate the Ca(OH)2 fixation during the first time and it is related to the specific surface obtained.

Related References:

1. Scrivener, K. L.; John, V. M.; and Gartner, E. M., “Eco-Efficient Cements: Potential, Economically Viable Solutions for Low-CO2, Cement Based Materials Industry,” UNEP Report, 2016.

2. ACI Committee 232, “Report on the Use of Raw or Processed Natural Pozzolans in Concrete (ACI 232.1R-12),” American Concrete Institute, Farmington Hills, MI, 2012, 29 pp.

3. Mielenz, R. C.; Witte, L. P.; and Glantz, O. J., “Effect of Calcination on Natural Pozzolans,” Symposium on Use of Pozzolanic Materials in Mortars and Concretes, T. Stanton and R. Blanks, eds., STP-99, 1950, pp. 43-92.

4. Mather, B., and Pepper, L., “Effectiveness of Mineral Admxtures in Preventing Excessive Expansion of Concrete due to Alkali-Aggregate Reaction,” SP-223, Investigating Concrete: Selected Works of Bryant and Katharine Mather, C. Oyildirim and S. Ahmad, eds., American Concrete Institute, Farmington Hills, MI, 2004, pp. 23-54.

5. Price, W. H., “Pozzolans—A Review,” ACI Journal Proceedings, V. 72, No. 5, May 1975, pp. 225-232.

6. de Souza Santos, P., “Industrial Clays in Brazil: A Review,” 2001. A Clay Odyssey, ed. E. Domínguez, G. Mas, and F. Cravero, eds., Elsevier Science Publishers, Amsterdam, the Netherlands, 2003, pp. 323-330.

7. Batic, O. R.; Iñiguez Rodríguez, A. M.; and Wainsztein, M., “Puzolanas artificiales obtenidas por tratamiento térmico de arcillas de la provincia de Buenos Aires (1a parte),” An. LEMIT, V. 2, 1971, pp. 2-20. (in Spanish)

8. Ambroise, J.; Murat, M.; and Péra, J., “Hydration Reaction and Hardening of Calcined Clays and Related Minerals v. Extension of the Research and General Conclusions,” Cement and Concrete Research, V. 15, No. 2, 1985, pp. 261-268. doi: 10.1016/0008-8846(85)90037-7

9. He, C.; Osbaeck, B.; and Makovicky, E., “Pozzolanic Reactions of Six Principal Clay Minerals: Activation, Reactivity Assessments and Technological Effects,” Cement and Concrete Research, V. 25, No. 8, 1995, pp. 1691-1702. doi: 10.1016/0008-8846(95)00165-4

10. Fernandez, R.; Martirena, F.; and Scrivener, K. L., “The Origin of the Pozzolanic Activity of Calcined Clay Minerals: A Comparison between Kaolinite, Illite and Montmorillonite,” Cement and Concrete Research, V. 41, No. 1, 2011, pp. 113-122. doi: 10.1016/j.cemconres.2010.09.013

11. Hollanders, S.; Adriaens, R.; Skibsted, J.; Cizer, Ö.; and Elsen, J., “Pozzolanic Reactivity of Pure Calcined Clays,” Applied Clay Science, V. 132-133, 2016, pp. 552-560. doi: 10.1016/j.clay.2016.08.003

12. Schneider, M.; Romer, M.; Tschudin, M.; and Bolio, H., “Sustainable Cement Production—Present and Future,” Cement and Concrete Research, V. 41, No. 7, 2011, pp. 642-650. doi: 10.1016/j.cemconres.2011.03.019

13. Juenger, M. C. G., and Siddique, R., “Recent Advances in Understanding the Role of Supplementary Cementitious Materials in Concrete,” Cement and Concrete Research, V. 78, 2015, pp. 71-80. doi: 10.1016/j.cemconres.2015.03.018

14. Miller, S. A.; John, V. M.; Pacca, S. A.; and Horvath, A., “Carbon Dioxide Reduction Potential in the Global Cement Industry by 2050,” Cement and Concrete Research, V. 114, 2018, pp. 115-124. doi: 10.1016/j.cemconres.2017.08.026

15. Kakali, G.; Perraki, T.; Tsivilis, S.; and Badogiannis, E., “Thermal Treatment of Kaolin: The Effect of Mineralogy on the Pozzolanic Activity,” Applied Clay Science, V. 20, No. 1-2, 2001, pp. 73-80. doi: 10.1016/S0169-1317(01)00040-0

16. Danner, T.; Østnor, T.; and Justnes, H., “Calcined Marl as a Pozzolan for Sustainable Development of the Cement and Concrete Industry,” Twelfth International Conference on Recent Advantages in Concrete Technology and Sustainability Issues, SP-289, T. C. Holland, P. R. Gupta, and V. M. Malhotra, eds., American Concrete Institute, Farmington Hills, MI, 2012, 12 pp.

17. Seraj, S.; Cano, R.; Ferron, R. P.; and Juenger, M. C. G., “Calcined Shale as Low Cost Supplementary Cementitious Material,” Calcined Clays for Sustainable Concrete: Proceedings of the 1st International Conference on Calcined Clays for Sustainable Concrete, RILEM, Paris, France, 2015, pp. 531-537.

18. Trümer, A.; Ludwig, H.-M.; and Rohioff, K., “Investigations into the Application of Calcined Clays as Composite Material in Cement,” ZKG International, V. 67, 2014, pp. 52-57.

19. Beuntner, N., and Thienel, K.-C., “Performance and Properties of Concrete Made with Calcined Clays,” 10th ACI/RILEM International Conference on Cementitious Materials and Alternative Binders for Sustainable Concrete, SP-320, A. Tagnit-Hamou, ed., American Concrete Institute, Farmington Hills, MI, 2017, 12 pp.

20. Tironi, A.; Trezza, M. A.; Scian, A. N.; and Irassar, E. F., “Kaolinitic Calcined Clays: Factors Affecting Its Performance as Pozzolans,” Construction and Building Materials, V. 28, No. 1, 2012, pp. 276-281. doi: 10.1016/j.conbuildmat.2011.08.064

21. Alujas, A.; Fernández, R.; Quintana, R.; Scrivener, K. L.; and Martirena, F., “Pozzolanic Reactivity of Low Grade Kaolinitic Clays: Influence of Calcination Temperature and Impact of Calcination Products on OPC Hydration,” Applied Clay Science, V. 108, 2015, pp. 94-101. doi: 10.1016/j.clay.2015.01.028

22. Trümer, A., and Ludwig, H.-M., “Sulphate and ASR Resistance of Concrete Made with Calcined Clay Blended Cements,” Calcined Clays for Sustainable Concrete: Proceedings of the 1st International Conference on Calcined Clays for Sustainable Concrete, RILEM, Paris, France, 2015, pp. 3-9.

23. Shi, Z.; Ferreiro, S.; Lothenbach, B.; Geiker, M. R.; Kunther, W.; Kaufmann, J.; Herfort, D.; and Skibsted, J., “Sulfate Resistance of Calcined Clay – Limestone – Portland Cements,” Cement and Concrete Research, V. 116, 2019, pp. 238-251. doi: 10.1016/j.cemconres.2018.11.003

24. Cordoba, G.; Rossetti, A.; Falcone, D.; and Irassar, E. F., “Sulfate and Alkali-Silica Performance of Blended Cements Containing Illitic Calcined Clays,” Calcined Clays for Sustainable Concrete: Proceedings of the 2nd International Conference on Calcined Clays for Sustainable Concrete, RILEM, Paris, France, 2018, pp. 117-123.

25. Trümer, A., and Ludwig, H.-M. M., “Assessment of Calcined Clays According to the Main Criterions of Concrete Durability,” Calcined Clays for Sustainable Concrete: Proceedings of the 2nd International Conference on Calcined Clays for Sustainable Concrete, RILEM, Paris, France, 2018, pp. 475-481.

26. Detwiler, R. J.; Bhatty, J. I.; Barger, G.; and Hansen, E. R., “Durability of Concrete Containing Calcined Clay,” Concrete International, V. 23, No. 4, Apr. 2001, pp. 45-49.

27. Favier, A. R.; Dunant, C. F.; and Scrivener, K. L., “Alkali Silica Reaction Mitigating Properties of Ternary Blended Cement with Calcined Clay and Limestone,” Calcined Clays for Sustainable Concrete: Proceedings of the 1st International Conference on Calcined Clays for Sustainable Concrete, RILEM, Paris, France, 2015.

28. Arrouy, M. J.; Poiré, D. G.; Peral, L. E. G.; and Canalicchio, J. M., “Sedimentology and stratigraphy of the La Providencia Group (nov. nom.): Upper Neoproterozoic Cover, Tandilia System, Argentina,” Latin American Journal of Sedimentology and Basin Analysis, V. 22, 2015, pp. 171-189.

29. Cingolani, C. A., “The Tandilia System of Argentina as a Southern Extension of the Río de la Plata Craton: An Overview,” International Journal of Earth Sciences, V. 100, No. 2-3, 2011, pp. 221-242. doi: 10.1007/s00531-010-0611-5

30. Martínez, J. C.; Dristas, J. A.; Massonne, H.-J.; and Theye, T., “A Hydrothermal Clay Mineral Assemblage at the Late Proterozoic Unconformity in the Buenos Aires Complex – La Tinta Formation, Barker Area, Tandilia Ranges (Argentina),” Clay Minerals, V. 45, No. 2, 2010, pp. 209-224. doi: 10.1180/claymin.2010.045.2.209

31. Gómez Samus, M. L.; Chimento, N. R.; Löffler, J.; Rico, Y.; Sierra, L.; and Bidegain, J. C., “Neogene–Quaternary in Tandilia, South America: Litho- Bio- Magnetostratigraphy,” Journal of Iberian Geology, V. 43, No. 4, 2017, pp. 559-581. doi: 10.1007/s41513-017-0037-z

32. Rabassa, J., “Geología Superficial en la hoja ‘Sierras de Tandil’, Provincia de Buenos Aires,” An. LEMIT, V. II, 1973, pp. 115-160. (in Spanish)

33. Gražulis, S.; Chateigner, D.; Downs, R. T.; Yokochi, A. F. T.; Quirós, M.; Lutterotti, L.; Manakova, E.; Butkus, J.; Moeck, P.; and Le Bail, A., “Crystallography Open Database—An Open-Access Collection of Crystal Structures,” Journal of Applied Crystallography, V. 42, 2009, pp. 726–729. doi: 10.1107/S0021889809016690

34. de Caritat, P.; Hutcheon, I.; and Walshe, J. L., “Chlorite Geothermometry: A Review,” Clays and Clay Minerals, V. 41, No. 2, 1993, pp. 219-239. doi: 10.1346/CCMN.1993.0410210

35. Shvarzman, A.; Kovler, K.; Grader, G. S.; and Shter, G. E., “The Effect of DehydroxylationAmorphization Degree on Pozzolanic Activity of Kaolinite,” Cement and Concrete Research, V. 33, No. 3, 2003, pp. 405-416. doi: 10.1016/S0008-8846(02)00975-4

36. Luxan, M. P.; Madruga, F.; and Saavedra, J., “Rapid Evaluation of Pozzolanic Activity of Natural Products,” Cement and Concrete Research, V. 19, No. 1, 1989, pp. 63-68. doi: 10.1016/0008-8846(89)90066-5

37. Yu, Q.; Sawayama, K.; Sugita, S.; Shoya, M.; and Isojima, Y., “The Reaction between Rice Husk Ash and Ca(OH)2 Solution and the Nature of Its Product,” Cement and Concrete Research, V. 29, No. 1, 1999, pp. 37-43. doi: 10.1016/S0008-8846(98)00172-0

38. Sinthaworn, S., and Nimityongskul, P., “Effects of Temperature and Alkaline Solution on Electrical Conductivity Measurements of Pozzolanic Activity,” Cement and Concrete Composites, V. 33, No. 5, 2011, pp. 622-627. doi: 10.1016/j.cemconcomp.2011.02.012

39. Madejova, J., “Baseline Studies of the Clay Minerals Society Source Clays: Infrared Methods,” Clays and Clay Minerals, V. 49, No. 5, 2001, pp. 410-432. doi: 10.1346/CCMN.2001.0490508

40. Tironi, A.; Trezza, M. A.; Scian, A. N.; and Irassar, E. F., “Thermal Analysis to Assess Pozzolanic Activity of Calcined Kaolinitic Clays,” Journal of Thermal Analysis and Calorimetry, V. 117, No. 2, 2014, pp. 547-556. doi: 10.1007/s10973-014-3816-1

41. Tironi, A.; Trezza, M. A.; Scian, A. N.; and Irassar, E. F., “Assessment of Pozzolanic Activity of Different Calcined Clays,” Cement and Concrete Composites, V. 37, 2013, pp. 319-327. doi: 10.1016/j.cemconcomp.2013.01.002

42. Tazaki, K.; Tiba, T.; Aratani, M.; and Miyachi, M., “Structural Water in Volcanic Glass,” Clays and Clay Minerals, V. 40, No. 1, 1992, pp. 122-127. doi: 10.1346/CCMN.1992.0400113

43. He, C.; Makovicky, E.; and Øsbæck, B., “Thermal Stability and Pozzolanic Activity of Calcined Illite,” Applied Clay Science, V. 9, No. 5, 1995, pp. 337-354. doi: 10.1016/0169-1317(94)00033-M

44. Lemma, R.; Irassar, E. F.; and Rahhal, V., “Calcined Illitic Clays as Portland Cement Replacements,” Calcined Clays for Sustainable Concrete: Proceedings of the 1st International Conference on Calcined Clays for Sustainable Concrete, RILEM, Paris, France, 2015, pp. 269-276. doi: 10.1007/978-94-017-9939-3_33

45. Lemma, R.; Castellano, C. C.; Bonavetti, V. L.; Trezza, M. A.; Rahhal, V. F.; and Irassar, E. F., “Thermal Transformation of Illitic-Chlorite Clay and Its Pozzolanic Activity,” Calcined Clays for Sustainable Concrete: Proceedings of the 2nd International Conference on Calcined Clays for Sustainable Concrete, RILEM, Paris, France, 2018, pp. 266-272.

46. Tironi, A.; Trezza, M. A.; Irassar, E. F.; and Scian, A. N., “Thermal Treatment of Kaolin: Effect on the Pozzolanic Activity,” Procedia Materials Science, V. 1, 2012, pp. 343-350. doi: 10.1016/j.mspro.2012.06.046

47. Irassar, E. F.; Bonavetti, V. L.; Castellano, C. C.; Trezza, M. A.; Rahhal, V. F.; Cordoba, G.; and Lemma, R., “Calcined Illite-Chlorite Shale as Supplementary Cementing Material: Thermal Treatment, Grinding, Color and Pozzolanic Activity,” Applied Clay Science, V. 179, 2019. doi: 10.1016/j.clay.2019.105143

48. Sinthaworn, S., and Nimityongskul, P., “Quick Monitoring of Pozzolanic Reactivity of Waste Ashes,” Waste Management (New York, N.Y.), V. 29, No. 5, 2009, pp. 1526-1531. doi: 10.1016/j.wasman.2008.11.010

49. Marchetti, G.; Pokorny, J.; Tironi, A.; Trezza, M. A.; Rahhal, V. F.; Pavlík, Z.; Černy, R.; and Irassar, E. F., “Blended Cements with Calcined Illitic Clay: Workability and Hydration,” Calcined Clays for Sustainable Concrete: Proceedings of the 2nd International Conference on Calcined Clays for Sustainable Concrete, RILEM, Paris, France, 2018.

50. Tironi, A.; Castellano, C. C.; Bonavetti, V. L.; Trezza, M. A.; Scian, A. N.; and Irassar, E. F., “Kaolinitic Calcined Clays—Portland Cement System: Hydration and Properties,” Construction and Building Materials, V. 64, 2014, pp. 215-221. doi: 10.1016/j.conbuildmat.2014.04.065

51. He, C.; Makovicky, E.; and Osbæck, B., “Thermal Treatment and Pozzolanic Activity of Na- and Ca-Montmorillonite,” Applied Clay Science, V. 10, No. 5, 1996, pp. 351-368. doi: 10.1016/0169-1317(95)00037-2

52. Ferreiro, S.; Herfort, D.; and Damtoft, J. S., “Effect of Raw Clay Type, Fineness, Water-to-Cement Ratio and Fly Ash Addition on Workability and Strength Performance of Calcined Clay – Limestone Portland Cements,” Cement and Concrete Research, V. 101, 2017, pp. 1-12. doi: 10.1016/j.cemconres.2017.08.003

53. Castillo, R.; Fernández, R.; Antoni, M.; Scrivener, K.; Alujas, A.; and Martirena, J. F., “Activation of Low Grade Clay at High Temperatures,” Revista de Ingeniería de Construcción, V. 25, 2010, pp. 329-352. doi: 10.4067/S0718-50732010000300001

54. O’Farrell, M.; Sabir, B. B.; and Wild, S., “Strength and Chemical Resistance of Mortars Containing Brick Manufacturing Clays Subjected to Different Treatments,” Cement and Concrete Composites, V. 28, No. 9, 2006, pp. 790-799. doi: 10.1016/j.cemconcomp.2006.05.014

55. Taylor-Lange, S. C.; Rajabali, F.; Holsomback, N. A.; Riding, K.; and Juenger, M. C. G., “The Effect of Zinc Oxide Additions on the Performance of Calcined Sodium Montmorillonite and Illite Shale Supplementary Cementitious Materials,” Cement and Concrete Composites, V. 53, 2014, pp. 127-135. doi: 10.1016/j.cemconcomp.2014.06.008


ALSO AVAILABLE IN:

Electronic Materials Journal



  

Edit Module Settings to define Page Content Reviewer