Title:
Evaluation of Alternative Fly Ashes as Supplementary Cementitious Materials
Author(s):
X. Wirth, D. Benkeser, N. N. Nortey Yeboah, C. R. Shearer, K. E. Kurtis, and S. E. Burns
Publication:
Materials Journal
Volume:
116
Issue:
4
Appears on pages(s):
69-77
Keywords:
amorphous glass; ASTM C618; biomass; co-fired; loss on ignition (LOI); performance-based design
DOI:
10.14359/51716712
Date:
7/1/2019
Abstract:
Due to changes in energy production and increased emissions regulations, fly ashes that meet specifications for concrete production are becoming increasingly limited in North America. Woody biomass ash, ash from coal that has been co-fired with small amounts of biomass, and previously geologically disposed, weathered coal fly ashes are each vast and geographically distributed potential sources which could augment the limited supply of “on-spec” or ordinary fly ash. This study characterizes a range of these alternative ash sources to assess if they fulfill the physical and chemical requirements and the strength performance index in ASTM C618. Changes to ASTM C618 that address the current fly ash production environment are recommended, including broadening the definition of fly ash to allow for reclaimed weathered ashes, co-fired ashes, and blended ashes that meet prescriptive and performance specifications.
Related References:
1. U.S. Energy Information Administration, “Electric Power Monthly,” U.S. Department of Energy, Washington, DC, 1995. doi:10.2172/12320010.2172/123200
2. AASHTO, “AASHTO Subcommittee on Materials (SOM) 2016 Fly Ash Task Force Report,” American Association of State Highway and Transportation Officials, Washington, DC, 2016, 24 pp.
3. ASTM C618-17, “Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete,” ASTM International, West Conshohocken, PA, 5 pp. doi:10.1520/C061810.1520/C0618
4. ACAA, “Fly Ash Facts for Highway Engineers,” American Coal Ash Association, Farmington Hills, MI, 2003, 76 pp.
5. Dinakar, P.; Babu, K. G.; and Santhanam, M., “Durability Properties of High Volume Fly Ash Self Compacting Concretes,” Cement and Concrete Composites, V. 30, No. 10, 2008, pp. 880-886. doi: 10.1016/j.cemconcomp.2008.06.011
6. Gopalan, M. K., “Sorptivity of Fly Ash Concretes,” Cement and Concrete Research, V. 26, No. 8, 1996, pp. 1189-1197. doi: 10.1016/0008-8846(96)00105-6
7. Nath, P., and Sarker, P., “Effect of Fly Ash on the Durability Properties of High Strength Concrete,” Procedia Engineering, V. 14, 2011, pp. 1149-1156. doi: 10.1016/j.proeng.2011.07.144
8. Swamy, R. N., “Design for Durability and Strength through the Use of Fly Ash and Slag in Concrete,” Third CANMET/ACI International Symposium on Advances in Concrete Technology, SP-171, American Concrete Institute, Farmington Hills, MI, 1997, pp. 1-72.
9. Burris, L. E., “Increasing the Reactivity of Natural Zeolites Used as Supplementary Cementitious Materials,” dissertation, University of Texas at Austin, Austin, TX, 2014.
10. Cancio Díaz, Y.; Sánchez Berriel, S.; Heierli, U.; Favier, A. R.; Sánchez Machado, I. R.; Scrivener, K. L.; Martirena Hernández, J. F.; and Habert, G., “Limestone Calcined Clay Cement as a Low-Carbon Solution to Meet Expanding Cement Demand in Emerging Economies,” Development Engineering, V. 2, 2017, pp. 82-91. doi: 10.1016/j.deveng.2017.06.001
11. Maraghechi, H.; Salwocki, S.; and Rajabipour, F., “Utilisation of Alkali Activated Glass Powder in Binary Mixtures with Portland Cement, Slag, Fly Ash and Hydrated Lime,” Materials and Structures, V. 50, No. 16, 2017, doi: 10.1617/s11527-016-0922-5
12. Yeboah, N. N. N.; Shearer, C. R.; Burns, S. E.; and Kurtis, K. E., “Characterization of Biomass and High Carbon Content Coal Ash for Productive Reuse Applications,” Fuel, V. 116, 2014, pp. 438-447. doi: 10.1016/j.fuel.2013.08.030
13. Girón, R. P.; Ruiz, B.; Fuente, E.; Gil, R. R.; and Suárez-Ruiz, I., “Properties of Fly Ash from Forest Biomass Combustion,” Fuel, V. 114, 2013, pp. 71-77. doi: 10.1016/j.fuel.2012.04.042
14. van Eljk, R. J.; Obernberger, I.; and Supancic, K., “Options for Increased Utilization of Ash from Biomass Combustion and Co-Firing,” IEA Bioenergy Task 32, Deliverable D4, KEMA Nederland B.V., Arnhem, the Netherlands, 2012, 40 pp.
15. van Loo, S., and Koppejan, J., The Handbook of Biomass Combustion and Co-Firing, Earthscan, 2008.
16. Vassilev, S. V.; Baxter, D.; Andersen, L. K.; and Vassileva, C. G., “An Overview of the Chemical Composition of Biomass,” Fuel, V. 89, No. 5, 2010, pp. 913-933. doi: 10.1016/j.fuel.2009.10.022
17. Georgia Power, “History of Construction—Plant Wansley Ash Pond,” Atlanta, GA, 2018, 19 pp.
18. Eze, C. P.; Nyale, S. M.; Akinyeye, R. O.; Gitari, W. M.; Akinyemi, S. A.; Fatoba, O. O.; and Petrik, L. F., “Chemical, Mineralogical and Morphological Changes in Weathered Coal Fly Ash: A Case Study of a Brine Impacted Wet Ash Dump,” Journal of Environmental Management, V. 129, 2013, pp. 479-492. doi: 10.1016/j.jenvman.2013.07.024
19. McCarthy, G. J.; Grier, D. G.; Wisdom, M. A.; Peterson, R. B.; Lerach, S. L.; Jarabek, R. L.; Walsh, J. J.; and Winburn, R. S., “Coal Combustion By-Product Diagenesis II,” International Ash Utilization Symposium, Lexington, KY, 1999, 9 pp.
20. Akinyemi, S. A.; Akinlua, A.; Gitari, W. M.; and Petrik, L. F., “Mineralogy and Mobility Patterns of Chemical Species in Weathered Coal Fly Ash,” Energy Sources. Part A, Recovery, Utilization, and Environmental Effects, V. 33, No. 8, 2011, pp. 768-784. doi: 10.1080/15567030903261881
21. Zevenbergen, C.; Bradley, J. P.; Van Reeuwijk, L. P.; Shyam, A. K.; Hjelmar, O.; and Comans, R. N. J., “Clay Formation and Metal Fixation during Weathering of Coal Fly Ash,” Environmental Science & Technology, V. 33, No. 19, 1999, pp. 3405-3409. doi: 10.1021/es9900151
22. Zhang, M. H., and Malhotra, V. M., “High-Performance Concrete Incorporating Rice Husk Ash as a Supplementary Cementing Material,” ACI Materials Journal, V. 93, No. 6, Nov.-Dec. 1996, pp. 629-636. doi: 10.14359/9870
23. Zareei, S. A.; Ameri, F.; Dorostkar, F.; and Ahmadi, M., “Rice Husk Ash as a Partial Replacement of Cement in High Strength Concrete Containing Micro Silica: Evaluating Durability and Mechanical Properties,” Case Studies in Construction Materials, V. 7, 2017, pp. 73-81. doi: 10.1016/j.cscm.2017.05.001
24. Isaia, G. C.; Gastaldini, A. L. G.; and Moraes, R., “Physical and Pozzolanic Action of Mineral Additions on the Mechanical Strength of High-Performance Concrete,” Cement and Concrete Composites, V. 25, No. 1, 2003, pp. 69-76. doi: 10.1016/S0958-9465(01)00057-9
25. Berra, M.; Mangialardi, T.; and Paolini, A. E., “Reuse of Woody Biomass Fly Ash in Cement-Based Materials,” Construction and Building Materials, V. 76, 2015, pp. 286-296. doi: 10.1016/j.conbuildmat.2014.11.052
26. Ukrainczyk, N., “Reuse of Woody Biomass Ash Waste in Cementitious Materials,” Chemical and Biochemical Engineering Quarterly, V. 30, No. 2, 2016, pp. 137-148. doi: 10.15255/CABEQ.2015.2231
27. Wang, S.; Miller, A.; Llamazos, E.; Fonseca, F.; and Baxter, L., “Biomass Fly Ash in Concrete: Mixture Proportioning and Mechanical Properties,” Fuel, V. 87, No. 3, 2008, pp. 365-371. doi: 10.1016/j.fuel.2007.05.026
28. Shearer, C. R., and Kurtis, K. E., “Use of Biomass and Co-Fired Fly Ash in Concrete,” ACI Materials Journal, V. 112, No. 2, Mar.-Apr. 2015, pp. 209-218. doi: 10.14359/51686827
29. Johnson, A.; Catalan, L. J. J.; and Kinrade, S. D., “Characterization and Evaluation of Fly-Ash from Co-Combustion of Lignite and Wood Pellets for Use as Cement Admixture,” Fuel, V. 89, No. 10, 2010, pp. 3042-3050. doi: 10.1016/j.fuel.2010.05.027
30. Shearer, C. R., “The Productive Reuse of Coal, Biomass, and Co-Fired Fly Ash,” PhD dissertation, Georgia Institute of Technology, Atlanta, GA, 2014.
31. Fedorka, W.; Knowles, J.; and Castleman, J., “Reclaiming and Recycling Coal Fly Ash for Beneficial Reuse with the STARTM Process,” 2015 World Coal Ash Conference, Lexington, KY, 2015, 10 pp.
32. EN 450-1:2005, “Fly Ash for Concrete—Part 1, Definition, Specifications and Conformity Criteria,” European Committee for Standardization, Brussels, Belgium, 2005, 38 pp.
33. Chancey, R. T.; Stutzman, P.; Juenger, M. C. G.; and Fowler, D. W., “Comprehensive Phase Characterization of Crystalline and Amorphous Phases of a Class F Fly Ash,” Cement and Concrete Research, V. 40, No. 1, 2010, pp. 146-156. doi: 10.1016/j.cemconres.2009.08.029
34. Ward, C. R., and French, D., “Determination of Glass Content and Estimation of Glass Composition in Fly Ash Using Quantitative X-Ray Diffractometry,” Fuel, V. 85, No. 16, 2006, pp. 2268-2277. doi: 10.1016/j.fuel.2005.12.026
35. Madsen, I. C.; Scarlett, N. V. Y.; and Kern, A., “Description and Survey of Methodologies for the Determination of Amorphous Content via X-Ray Powder Diffraction,” Zeitschrift für Kristallographie, V. 226, No. 12, 2011, pp. 944-955. doi: 10.1524/zkri.2011.1437
36. Kruse, K.; Jasso, A.; Folliard, K.; Ferron, R.; Juenger, M.; and Drimalas, T., “Characterizing Class C Fly Ashes for Alkali Silica Reaction Mitigation Effectiveness,” Report No. PSR 0-6648-S, Texas Department of Transportation, Austin, TX, 2012.
37. ASTM C109/C109M-16a, “Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2-in or 50mm Cube Specimens),” ASTM International, West Conshohocken, PA, 2016, 10 pp. doi: 10.1520/C010910.1520/C0109
38. Mccarthy, G. J.; Solem, J. K.; Manz, O. E.; and Hassett, D. J., “Use of a Database of Chemical, Mineralogical, and Physical Properties of North American Fly Ash to Study the Nature of Fly Ash and its Utilization as a Mineral Admixture in Concrete,” Proceedings, Materials Research Society Symposium, V. 178, 1989, pp. 3-33. doi: 10.1557/PROC-178-3
39. Yeheyis, M. B.; Shang, J. Q.; and Yanful, E. K., “Chemical and Mineralogical Transformations of Coal Fly Ash after Landfilling,” World of Coal Ash Conference, Lexington, KY, 2009, 13 pp.
40. Kim, B., and Prezzi, M., “Compaction Characteristics and Corrosivity of Indiana Class-F Fly and Bottom Ash Mixtures,” Construction and Building Materials, V. 22, No. 4, 2008, pp. 694-702. doi: 10.1016/j.conbuildmat.2006.09.007
41. Wirth, X.; Glatstein, D. A.; and Burns, S. E., “Mineral Phases and Carbon Content in Weathered Fly Ashes,” Fuel, V. 236, 2019, pp. 1567-1576. doi: 10.1016/j.fuel.2018.09.106
42. Plunk, G. C., “How PACT was Used to Avoid 5 Million Tons of Landfilled Fly Ash,” Ash at Work, No. 2, 2015, pp. 14-17.
43. Illia, T., “BASF Unveils New Alternative to Air-Entrained Concrete,” Engineering News Record, April 1, 2014, https://www.enr.com/articles/9748-basf-unveils-new-alternative-to-air-entrained-concrete. (last accessed June 11, 2019)
44. Hill, R.; Jolicoeur, C. R.; Page, M.; Spiratos, I.; and To, T. C., “Sacrificial Agents for Fly Ash Concrete,” European Patent EP1611069A2, 2003.
45. Mohebbi, M.; Rajabipour, F.; and Scheetz, B. E., “Evaluation of Two-Atmosphere Thermogravimetric Analysis for Determining the Unburned Carbon Content in Fly Ash,” Advances in Civil Engineering Materials, V. 6, No. 1, 2017, pp. 258-279. doi: 10.1520/ACEM20160052
46. Fan, M., and Brown, R. C., “Comparison of the Loss-on-Ignition and Thermogravimetric Analysis Techniques in Measuring Unburned Carbon in Coal Fly Ash,” Energy & Fuels, V. 15, No. 6, 2001, pp. 1414-1417. doi: 10.1021/ef0100496
47. Straka, P.; Náhunková, J.; and Žaloudková, M., “Analysis of Unburned Carbon in Industrial Ashes from Biomass Combustion by Thermogravimetric Method Using Boudouard Reaction,” Thermochimica Acta, V. 575, 2014, pp. 188-194. doi: 10.1016/j.tca.2013.10.033
48. Vassilev, S. V.; Menendez, R.; Alvarez, D.; Diaz-Somoano, M.; and Martinez-Tarazona, M. R., “Phase-Mineral and Chemical Composition of Coal Fly Ashes as a Basis for their Multicomponent Utilization. 1. Characterization of Feed Coals and Fly Ashes,” Fuel, V. 82, No. 14, 2003, pp. 1793-1811. doi: 10.1016/S0016-2361(03)00123-6
49. van Roode, M.; Douglas, E.; Hemmings, R. T.; Douglas, E.; and Hemmings, R. T., “X-Ray Diffraction Measurement of Glass Content in Fly and Slags,” Cement and Concrete Research, V. 17, No. 2, 1987, pp. 183-197. doi: 10.1016/0008-8846(87)90101-3
50. Stefaniak, S.; Miszczak, E.; Szczepanska-Plewa, J.; and Twardowska, I., “Effect of Weathering Transformations of Coal Combustion Residuals on Trace Element Mobility in View of the Environmental Safety and Sustainability of their Disposal and Use. I. Hydrogeochemical Processes Controlling pH and Phase Stability,” Journal of Environmental Management, V. 156, 2015, pp. 128-142. doi: 10.1016/j.jenvman.2015.03.046
51. van der Merwe, E. M.; Prinsloo, L. C.; Mathebula, C. L.; Swart, H. C.; Coetsee, E.; and Doucet, F. J., “Surface and Bulk Characterization of an Ultrafine South African Coal Fly Ash with Reference to Polymer Applications,” Applied Surface Science, V. 317, 2014, pp. 73-83. doi: 10.1016/j.apsusc.2014.08.080
52. Font, O.; Moreno, N.; Querol, X.; Izquierdo, M.; Alvarez, E.; Diez, S.; Elvira, J.; Antenucci, D.; Nugteren, H.; Plana, F.; López, A.; Coca, P.; and Peña, F. G., “X-Ray Powder Diffraction-Based Method for the Determination of the Glass Content and Mineralogy of Coal (Co)-Combustion Fly Ashes,” Fuel, V. 89, No. 10, 2010, pp. 2971-2976. doi: 10.1016/j.fuel.2009.11.024
53. Ibáñez, J.; Font, O.; Moreno, N.; Elvira, J. J.; Alvarez, S.; and Querol, X., “Quantitative Rietveld Analysis of the Crystalline and Amorphous Phases in Coal Fly Ashes,” Fuel, V. 105, 2013, pp. 314-317. doi: 10.1016/j.fuel.2012.06.090
54. Yan, K.; Guo, Y.; Ma, Z.; Zhao, Z.; and Cheng, F., “Quantitative Analysis of Crystalline and Amorphous Phases in Pulverized Coal Fly Ash Based on the Rietveld Method,” Journal of Non-Crystalline Solids, V. 483, 2018, pp. 37-42. doi: 10.1016/j.jnoncrysol.2017.12.043
55. Oey, T.; Timmons, J.; Stutzman, P.; Bullard, J. W.; Balonis, M.; Bauchy, M.; and Sant, G., “An Improved Basis for Characterizing the Suitability of Fly Ash as a Cement Replacement Agent,” Journal of the American Ceramic Society, V. 100, No. 10, 2017, pp. 4785-4800. doi: 10.1111/jace.14974