Potential of Calcined Mixed-Layer Clays as Pozzolans in Concrete

International Concrete Abstracts Portal

The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

  


Title: Potential of Calcined Mixed-Layer Clays as Pozzolans in Concrete

Author(s): Nancy Beuntner, Ricarda Sposito, and Karl-Christian Thienel

Publication: Materials Journal

Volume: 116

Issue: 4

Appears on pages(s): 19-29

Keywords: activity index; calcination; calcined clays; durability; fresh concrete properties; pozzolanic reaction; specific surface area; supplementary cementitious material; water demand

DOI: 10.14359/51716677

Date: 7/1/2019

Abstract:
Calcined clays have become increasingly attractive as supplementary cementitious materials (SCMs). This paper begins with describing the mineralogical diversity of clays and presents the advantages of naturally occurring mixed-layer clays. It illustrates the necessity of optimal calcination temperatures depending on type of clay, and first steps are discussed toward industrial production. The following chapter gives an overview of selected physical and chemical-mineralogical properties and the essential reaction mechanisms of calcined clays as SCMs. The latest findings on their influence on early hydration and their special role in fresh concrete are presented. The potential of calcined clays in concrete is highlighted exemplary for selected mechanical properties and durability aspects. Lastly, the potential and limits of calcined clays as a future part of blended cements or concrete additive are evaluated, considering ecological aspects, as well.

Related References:

1. International Energy Agency and World Business Council for Sustainable Development, “Cement Technology Roadmap 2009 – Carbon Emissions Reductions Up to 2050,” Paris, France, 2009, 36 pp.

2. Schneider, M.; Romer, M.; Tschudin, M.; and Bolio, H., “Sustainable Cement Production—Present and Future,” Cement and Concrete Research, V. 41, No. 7, 2011, pp. 642-650. doi: 10.1016/j.cemconres.2011.03.019

3. Schwarzkopp, F.; Drescher, J.; Gornig, M.; and Blazejczak, J., “Die Nachfrage nach Primär- und Sekundärrohstoffen der Steine-und-Erden-Industrie bis 2030 in Deutschland - Kurzfassung (The Demand for Primary and Secondary Raw Materials in the Mineral and Building Materials Industry in Germany up to 2035 - Executive Summary),” Bundesverband Baustoffe - Steine und Erden e. V., Berlin, Germany, 2013, 44 pp.

4. Beuntner, N., “Zur Eignung und Wirkungsweise Calcinierter Tone als Reaktive Bindemittelkomponente in Zement,” Fakultät für Bauingenieurwesen und Umweltwissenschaften, Universität der Bundeswehr München, Neubiberg, 2017, 207 pp.

5. Murat, M., “Hydration Reaction and Hardening of Calcined Clays and Related Minerals: I. Preliminary Investigation on Metakaolinite,” Cement and Concrete Research, V. 13, No. 2, 1983, pp. 259-266. doi: 10.1016/0008-8846(83)90109-6

6. Murat, M., “Hydration Reaction and Hardening of Calcined Clays and Related Minerals: II. Influence of Mineralogical Properties of the Raw-Kaolinite on the Reactivity of Metakaolinite,” Cement and Concrete Research, V. 13, No. 4, 1983, pp. 511-518. doi: 10.1016/0008-8846(83)90010-8

7. Murat, M., and Comel, C., “Hydration Reaction and Hardening of Calcined Clays and Related Minerals: III. Influence of Calcination Process of Kaolinite on Mechanical Strengths of Hardened Metakaolinite,” Cement and Concrete Research, V. 13, No. 5, 1983, pp. 631-637. doi: 10.1016/0008-8846(83)90052-2

8. Ambroise, J.; Murat, M.; and Pera, J., “Hydration Reaction and Hardening of Calcined Clays and Related Minerals: IV. Experimental Conditions for Strength Improvement on Metakaolinite Minicylinders,” Cement and Concrete Research, V. 15, No. 1, 1985, pp. 83-88. doi: 10.1016/0008-8846(85)90011-0

9. Ambroise, J.; Murat, M.; and Péra, J., “Hydration Reaction and Hardening of Calcined Clays and Related Minerals: V. Extension of the Research and General Conclusions,” Cement and Concrete Research, V. 15, No. 2, 1985, pp. 261-268. doi: 10.1016/0008-8846(85)90037-7

10. He, C.; Makovicky, E.; and Osbæck, B., “Thermal Stability and Pozzolanic Activity of Calcined Kaolin,” Applied Clay Science, V. 9, No. 3, 1994, pp. 165-187. doi: 10.1016/0169-1317(94)90018-3

11. He, C.; Makovicky, E.; and Osbæck, B., “Thermal Treatment and Pozzolanic Activity of Sepiolite,” Applied Clay Science, V. 10, No. 5, 1996, pp. 337-349. doi: 10.1016/0169-1317(95)00035-6

12. He, C.; Makovicky, E.; and Øsbæck, B., “Thermal Stability and Pozzolanic Activity of Calcined Illite,” Applied Clay Science, V. 9, No. 5, 1995, pp. 337-354. doi: 10.1016/0169-1317(94)00033-M

13. He, C.; Øsbæck, B.; and Makovicky, E., “Pozzolanic Reactions of Six Principal Clay Minerals: Activation, Reactivity Assessments and Technological Effects,” Cement and Concrete Research, V. 25, No. 8, 1995, pp. 1691-1702. doi: 10.1016/0008-8846(95)00165-4

14. Lagier, F., and Kurtis, K. E., “Influence of Portland Cement Composition on Early Age Reactions with Metakaolin,” Cement and Concrete Research, V. 37, No. 10, 2007, pp. 1411-1417. doi: 10.1016/j.cemconres.2007.07.002

15. Cabrera, J., and Rojas, M. F., “Mechanism of Hydration of the Metakaolin–Lime–Water system,” Cement and Concrete Research, V. 31, No. 2, 2001, pp. 177-182. doi: 10.1016/S0008-8846(00)00456-7

16. Antoni, M., “Investigation of Cement Substitution by Blends of Calcined Clays and Limestone,” Faculté des Sciences et Techniques de L’ingénieur, École Polytechnique Fédérale de Lausanne, Lausanne, 2013, 254 pp.

17. Tironi, A.; Trezza, M. A.; Scian, A. N.; and Irassar, E. F., “Kaolinitic Calcined Clays: Factors Affecting Its Performance as Pozzolans,” Construction and Building Materials, V. 28, No. 1, 2012, pp. 276-281. doi: 10.1016/j.conbuildmat.2011.08.064

18. Cyr, M.; Trinh, M.; Husson, B.; and Casaux-Ginestet, G., “Effect of Cement Type on Metakaolin Efficiency,” Cement and Concrete Research, V. 64, 2014, pp. 63-72. doi: 10.1016/j.cemconres.2014.06.007

19. Marchetti, G.; Pokorny, J.; Tironi, A.; Trezza, M. A.; Rahhal, V. F.; Pavlík, Z.; Černý, R.; and Irassar, E. F., “Blended Cements with Calcined Illitic Clay: Workability and Hydration,” Calcined Clays for Sustainable Concrete—Proceedings of the Second International Conference on Calcined Clays for Sustainable Concrete, F. Martirena, A. Favier, and K. Scrivener, eds., Springer Nature, La Havana, Cuba, 2018, pp. 311-317.

20. Garg, N., and Skibsted, J., “Pozzolanic Reactivity of a Calcined Interstratified Illite/Smectite (70/30) Clay,” Cement and Concrete Research, V. 79, 2016, pp. 101-111. doi: 10.1016/j.cemconres.2015.08.006

21. Trümer, A., and Ludwig, H.-M., “Assessment of Calcined Clays According to the Main Criterions of Concrete Durability,” Calcined Clays for Sustainable Concrete—Proceedings of the Second International Conference on Calcined Clays for Sustainable Concrete, F. Martirena, A. Favier, and K. Scrivener, eds., Springer Nature, La Havanna, Cuba, 2018, pp. 475-481.

22. Lemma, R.; Irassar, E. F.; and Rahhal, V., “Calcined Illitic Clays as Portland Cement Replacements,” Calcined Clays for Sustainable Concrete, K. Scrivener and A. Favier, eds., Springer Netherlands, Dordrecht, 2015, pp. 269-276.

23. Jasmund, K.; Lagaly, G.; Köster, H. M.; Kohler, E. E.; Müller-Vonmoos, M.; Niederbudde, E. A.; Schüller, K.-H.; Schwertmann, U.; and Störr, M., Tonminerale und Tone: Struktur, Eigenschaften, Anwendungen und Einsatz in Industrie und Umwelt, Darmstadt, Dietrich Steinkopff Verlag, 1993, XIV, 490 pp.

24. Okrusch, M., and Matthes, S., Eine Einführung in die spezielle Mineralogie, Petrologie und Lagestättenkunde, eighth edition, Springer-Lehrbuch. Springer Spektrum, 2010, 728 pp.

25. Fernandez Lopez, R., “Calcined Clayey Soils as a Potential Replacement for Cement in Developing Countries,” Faculté Sciences et Techniques de L'ingénieur, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland, 2009, 154 pp.

26. Tironi, A.; Trezza, M. A.; Scian, A. N.; and Irassar, E. F., “Thermal Analysis to Assess Pozzolanic Activity of Calcined Kaolinitic Clays,” Journal of Thermal Analysis and Calorimetry, V. 117, No. 2, 2014, pp. 547-556. doi: 10.1007/s10973-014-3816-1

27. Slade, R. C. T.; Davies, T. W.; Atakül, H.; Hooper, R. M.; and Jones, D. J., “Flash Calcines of Kaolinite: Effect of Process Variables on Physical Characteristics,” Journal of Materials Science, V. 27, 1992, pp. 2490-2500. doi: 10.1007/BF01105062

28. San Nicolas, R., “Approche Performantielle des Bétons avec Métakaolins Obtenus par Calcination Flash,” Mécanique, énergétique, génie civil, procédés, Université de Toulouse, Toulouse, France, 2011, 340 pp.

29. Danner, T., “Reactivity of Calcined Clays,” Faculty of Natural Science and Technology, Department of Natural Sciences and Engineering, NTNU, Trondheim, Norway, 2013, 229 pp.

30. Beuntner, N., and Thienel, K.-C., “Properties of Calcined Lias Delta Clay – Technological Effects, Physical Characteristics and Reactivity in Cement,” First International Conference Calcined Clays for Sustainable Concrete, K. Scrivener, and A. Favier, eds., Springer Netherlands, Lausanne, Switzerland, 2015, pp. 43-50.

31. Almenares, R. S.; Vizcaíno, L. M.; Damas, S.; Mathieu, A.; Alujas, A.; and Martirena, F., “Industrial Calcination of Kaolinitic Clays to Make Reactive Pozzolans,” Case Studies in Construction Materials, V. 6, 2017, pp. 225-232. doi: 10.1016/j.cscm.2017.03.005

32. Deutsches Institut für Bautechnik, “CUAP 03.01/32 Natural Calcined Pozzolana as Type II Addition,” 2005, 17 pp.

33. Scherb, S.; Beuntner, N.; and Thienel, K.-C., “Reaction Kinetics of the Basic Clays Present in Natural Mixed Clays,” Calcined Clays for Sustainable Concrete – Proceedings of the Second International Conference on Calcined Clays for Sustainable Concrete, F. Martirena, A. Favier, and K. Scrivener, eds., Springer Nature, La Havana, Cuba, 2018, pp. 427-433.

34. Beuntner, N., and Thienel, K.-C., “Calcined Clays as Alternative Supplementary Cementitious Materials (Calcinierte Tone als alternative Betonzusatzstoffe),” 61. BetonTage, H.-J. Walther, ed., Bauverlag, Neu-Ulm, Germany, 2017, 50 pp.

35. DIN ISO 9277, “Determination of the Specific Surface Area of Solids by Gas Adsorption – BET Method,” 2003, 19 pp.

36. Neißer-Deiters, A.; Scherb, S.; and Thienel, K.-C., “Influence of the Calcination Temperature on the Properties of a Mica Mineral as a Suitability Study for the Use as SCM,” Applied Clay Science, V. 179, 2019, pp. 105168. doi: 10.1016/j.clay.2019.105168

37. Beuntner, N., “Leistungsfähigkeit großtechnisch calcinierter Tone und deren Wirksamkeit in zementären Systemen,” Innovationen in Beton - 1. DAfStb-Jahrestagung mit 54. Forschungskolloquium, R. Breitenbücher and P. Mark, eds., Deutscher Ausschuss für Stahlbeton, Bochum, 2013, 239-244 pp.

38. Beuntner, N., and Thienel, K.-C., “Solubility and Kinetics of Calcined Clay: Study of Interaction by Pore Solution,” Second International Conference on the Chemistry of Construction Materials (ICCCM 2016), J. Plank, L. Lei, and T. Echt, eds., Gesellschaft Deutscher Chemiker e.V., Munich, Germany, 2016, 157-160 pp.

39. DIN EN 197-1, “Zement – Teil 1: Zusammensetzung, Anforderungen und Konformitätskriterien von Normalzement (Cement - Part 1: Composition, Specifications and Conformity Criteria for Common Cements), 2011, 8 pp.

40. ASTM C618-05, “Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete,” ASTM International, West Conshohocken, PA, 2005, 3 pp.

41. Surana, M. S., and Joshi, S. N., “Spectrophotometric Method for Estimating the Reactivity of Pozzolanic Materials,” Advances in Cement ·Research, V. 1, No. 4, 1998, pp. 238-242.

42. Buchwald, A.; Kriegel, R.; Kaps, C.; and Zellmann, H.-D., “Untersuchung zur Reaktivität von Metakaolinen für die Verwendung in Bindemittelsystemen,” Gesellschaft Deutscher Chemiker e.V -Jahrestagung, München, 2003, 7 pp.

43. Avet, F.; Snellings, R.; Alujas, A.; and Scrivener, K., “Development of a New Rapid, Relevant and Reliable (R3) Testing Method to Evaluate the Pozzolanic Reactivity of Calcined Clays,” Calcined Clays for Sustainable Concrete, K. Scrivener, and A. Favier, eds., Springer Netherlands, 2015, pp. 539-544.

44. Trümer, A.; Ludwig, H.-M.; and Rohloff, K., “Investigation into the Application of Calcined Clays as Composite Material in Cement,” ZKG International, V. 67, No. 9, 2014, pp. 52-57.

45. Danner, T.; Norden, G.; and Justnes, H., “Characterisation of Calcined Raw Clays Suitable as Supplementary Cementitious Materials,” Applied Clay Science, V. 162, 2018, pp. 391-402. doi: 10.1016/j.clay.2018.06.030

46. Alujas, A.; Fernández, R.; Quintana, R.; Scrivener, K. L.; and Martirena, F., “Pozzolanic Reactivity of Low Grade Kaolinitic Clays: Influence of Calcination Temperature and Impact of Calcination Products on OPC Hydration,” Applied Clay Science, V. 108, 2015, pp. 94-101. doi: 10.1016/j.clay.2015.01.028

47. Shi, C., “An Overview on the Activation of Reactivity of Natural Pozzolans,” Canadian Journal of Civil Engineering, V. 28, No. 5, 2001, pp. 778-786. doi: 10.1139/l01-041

48. Thienel, K.-C., and Beuntner, N., “Effects of Calcined Clay as Low Carbon Cementing Materials on the Properties of Concrete,” Concrete in the Low Carbon Era, M. R. Jones et al., eds., University of Dundee – Concrete Technology Unit, Dundee, UK, 2012, 504-518 pp.

49. Taylor-Lange, S. C.; Rajabali, F.; Holsomback, N. A.; Riding, K.; and Juenger, M. C. G., “The Effect of Zinc Oxide Additions on the Performance of Calcined Sodium Montmorillonite and Illite Shale Supplementary Cementitious Materials,” Cement and Concrete Composites, V. 53, 2014, pp. 127-135. doi: 10.1016/j.cemconcomp.2014.06.008

50. Fernandez, R.; Martirena, F.; and Scrivener, K. L., “The Origin of the Pozzolanic Activity of Calcined Clay Minerals: A Comparison Between Kaolinite, Illite and Montmorillonite,” Cement and Concrete Research, V. 41, No. 1, 2011, pp. 113-122. doi: 10.1016/j.cemconres.2010.09.013

51. Sposito, R.; Dürr, I.; and Thienel, K.-C., “Lignosulfonates in Cementitious Systems Blended with Calcined Clays,” Durability and Sustainability of Concrete Structures – Second Workshop Proceedings, SP-326, V. Falikman et al., eds., American Concrete Institute, Farmington Hills, MI, 2018, pp. 10.1-10.10.

52. Zaribaf, B. H., and Kurtis, K. E., “Admixture Compatibility in Metakaolin–Portland-Limestone Cement Blends,” Materials and Structures, V. 51, No. 1, 2018, p. 13 doi: 10.1617/s11527-018-1154-7

53. Zaribaf, B. H.; Uzal, B.; and Kurtis, K., “Compatibility of Superplasticizers with Limestone-Metakaolin Blended Cementitious System,” Calcined Clays for Sustainable Concrete – Proceedings of the First International Conference on Calcined Clays for Sustainable Concrete, K. Scrivener, and A. Favier, eds., Springer, 2015, pp. 427-434.

54. Ahn, T.-H.; Shim, K.-B.; and Ryou, J.-S., “The Relationship between Various Super-Plasticizers and Hydration of Mortar Incorporating Metakaolin,” Journal of Ceramic Processing Research, V. 16, No. 2, 2015, pp. 181-187.

55. Ng, S., and Justnes, H., “Influence of Dispersing Agents on the Rheology and Early Heat of Hydration of Blended Cements with High Loading of Calcined Marl,” Cement and Concrete Composites, V. 60, 2015, pp. 123-134. doi: 10.1016/j.cemconcomp.2015.04.007

56. Schmid, M.; Beuntner, N.; Thienel, K.-C.; and Plank, J., “Colloid-Chemical Investigation of the Interaction between PCE Superplasticizers and a Calcined Mixed Layer Clay,” Calcined Clays for Sustainable Concrete – Proceedings of the Second International Conference on Calcined Clays for Sustainable Concrete, F. Martirena, A. Favier, and K. Scrivener, eds., Springer, La Havana, Cuba, 2018, pp. 434-439.

57. DIN EN 196-1, “Prüfverfahren für Zement - Teil 1: Bestimmung der Festigkeit (Methods of Testing Cement – Part 1: Determination of Strength),” 2005, 31 pp.

58. Thienel, K.-C., and Beuntner, N., “Ökologisch und technisch verbesserte Betone durch den Einsatz alternativer Zusatzstoffe,” Nachhaltigkeit und Innovation, J. Schwarz, and K.-C. Thienel, eds., Universität der Bundeswehr München, Fakultät für Bauingenieurwesen und Umweltwissenschaften, Neubiberg, 2013, pp. 58-65.

59. Deutscher Beton- und Bautechnik-Verein E.V., “DBV-Merkblatt - Besondere Verfahren zur Prüfung von Frischbeton,” 2007, 3 pp.

60. Rojas, M. F., and Cabrera, J., “The Effect of Temperature on the Hydration Rate and Stability of the Hydration Phases of Metakaolin–Lime–Water Systems,” Cement and Concrete Research, V. 32, No. 1, 2002, pp. 133-138. doi: 10.1016/S0008-8846(01)00642-1

61. Tironi, A.; Castellano, C. C.; Bonavetti, V. L.; Trezza, M. A.; Scian, A. N.; and Irassar, E. F., “Kaolinitic Calcined Clays – Portland Cement System: Hydration and Properties,” Construction and Building Materials, V. 64, 2014, pp. 215-221. doi: 10.1016/j.conbuildmat.2014.04.065

62. Baquerizo Ibarra, L. G., “Impact of Water Activity on the Mineralogy of Hydrated Cement,” Faculté des sciences et techniques de l'ingénieur; Institut des matériaux; Laboratoire des matériaux de construction, École polytechnique fédérale de Lausanne EPFL, Lausanne, Switzerland, 2015, 162 pp.

63. Beuntner, N., and Thienel, K.-C., “Performance and Properties of Concrete Made with Calcined Clays,” Tenth ACI/RILEM International Conference on Cementitious Materials and Alternative Binders for Sustainabe Concrete, SP-320, A. Tagnit-Hamou, eds., American Concrete Institute, Farmington Hills, MI, 2017, pp. 7.1-7.12.

64. Li, X.; Snellings, R.; Antoni, M.; Alderete, N. M.; Ben Haha, M.; Bishnoi, S.; Cizer, Ö.; Cyr, M.; De Weerdt, K.; Dhandapani, Y.; Duchesne, J.; Haufe, J.; Hooton, D.; Juenger, M.; Kamali-Bernard, S.; Kramar, S.; Marroccoli, M.; Joseph, A. M.; Parashar, A.; Patapy, C.; Provis, J. L.; Sabio, S.; Santhanam, M.; Steger, L.; Sui, T.; Telesca, A.; Vollpracht, A.; Vargas, F.; Walkley, B.; Winnefeld, F.; Ye, G.; Zajac, M.; Zhang, S.; and Scrivener, K. L., “Reactivity Tests for Supplementary Cementitious Materials: RILEM TC 267-TRM Phase 1,” Materials and Structures, V. 51, No. 6, 2018, p. 151 doi: 10.1617/s11527-018-1269-x

65. Khatib, J. M., and Wild, S., “Pore Size Distribution of Metakaolin Paste,” Cement and Concrete Research, V. 26, No. 10, 1996, pp. 1545-1553. doi: 10.1016/0008-8846(96)00147-0

66. Siddique, R., and Klaus, J., “Influence of Metakaolin on the Properties of Mortar and Concrete: A Review,” Applied Clay Science, V. 43, No. 3-4, 2009, pp. 392-400. doi: 10.1016/j.clay.2008.11.007

67. Trümer, A., and Ludwig, H.-M., “Calcinierte Tone als puzzolanischer Betonzusatzstoff,” 58. DAfStb-Forschungskolloquium, Deutscher Ausschuss für Stahlbeton, Kaiserlautern, 2017, 11 pp.

68. Pierkes, R.; Schulze, S. E.; and Rickert, J., “Durability of Concretes Made with Calcined Clay Composite Cements,” Calcined Clays for Sustainable Concrete – Proceedings of the Second International Conference on Calcined Clays for Sustainable Concrete, F. Martirena, A. Favier, and K. Scrivener, eds., Springer, La Havana, Cuba, 2018, pp. 366-371.

69. Bucher, R.; Diederich, P.; Escadeillas, G.; and Cyr, M., “Service Life of Metakaolin-Based Concrete Exposed to Carbonation: Comparison with Blended Cement Containing Fly Ash, Blast Furnace Slag and Limestone Filler,” Cement and Concrete Research, V. 99, 2017, pp. 18-29. doi: 10.1016/j.cemconres.2017.04.013

70. Walters, G. V., and Jones, T. R., “Effect of Metakaolin on Alkali-Silica-Reaction (ASR) in Concrete Manufactured with Reactive Aggregate,” Durability of Concrete: Second International Conference, SP-126, V. M. Malhotra, ed., American Concrete Institute, Farmington Hills, MI, 1991, pp. 941-953.

71. Cordoba, G.; Rossetti, A.; Falcone, D.; and Irassar, E. F., “Sulfate and Alkali-Silica Performance of Blended Cements Containing Illitic Calcined Clays,” Calcined Clays for Sustainable Concrete – Proceedings of the Second International Conference on Calcined Clays for Sustainable Concrete, F. Martirena, A. Favier, and K. Scrivener, eds., Springer, La Havana, Cuba, 2018, pp. 117-123.

72. Hong, S.-Y., and Glasser, F. P., “Alkali Binding in Cement Pastes: Part I. The C-S-H Phase,” Cement and Concrete Research, V. 29, No. 12, 1999, pp. 1893-1903. doi: 10.1016/S0008-8846(99)00187-8

73. Hong, S.-Y., and Glasser, F. P., “Alkali Sorption by C-S-H and C-A-S-H Gels: Part II. Role of Alumina,” Cement and Concrete Research, V. 32, No. 7, 2002, pp. 1101-1111. doi: 10.1016/S0008-8846(02)00753-6

74. Antoni, M.; Rossen, J.; Martirena, F.; and Scrivener, K., “Cement Substitution by a Combination of Metakaolin and Limestone,” Cement and Concrete Research, V. 42, No. 12, 2012, pp. 1579-1589. doi: 10.1016/j.cemconres.2012.09.006

75. Pérez, A.; Favier, A.; Scrivener, K.; and Martirena, F., “Influence Grinding Procedure, Limestone Content and PSD of Components on Properties of Clinker-Calcined Clay-Limestone Cements Produced by Intergrinding,” Calcined Clays for Sustainable Concrete – Proceedings of the Second International Conference on Calcined Clays for Sustainable Concrete, F. Martirena, A. Favier, and K. Scrivener, eds., Springer, La Havanna, Cuba, 2018, pp. 358-365.

76. Kluge, W., and Assmann, B. O., “Grinding of Calcined Clays and Its Effects on Cement Properties,” Calcined Clays for Sustainable Concrete – Proceedings of the Second International Conference on Calcined Clays for Sustainable Concrete, F. Martirena, A. Favier, and K. Scrivener, eds., Springer, La Havana, Cuba, 2018, pp. 244-248.

77. CEN/TR 16639, “Use of K-Value Concept, Equivalent Concrete Performance Concept and Equivalent Performance of Combinations Concept,” 2014, 63 pp.

78. DIN EN 206, “Concrete - Specification, Performance, Production and Conformity,” 2013, 96 pp.

79. Manns, W., “Gemeinsame Anwendung von Silicastaub und Steinkohlenflugasche als Betonzusatzstoff,” Beton, V. 47, No. 12, 1997, pp. 716-720.

80. DIN 1045-2, “Tragwerke aus Beton, Stahlbeton und Spannbeton – Teil 2: Beton – Festlegung, Eigenschaften, Herstellung und Konformität – Anwendungsregeln zu DIN EN 206-1 (Concrete, Reinforced and Prestressed Concrete Structures – Part 2: Concrete – Specification, Properties, Production and Conformity – Application Rules For DIN EN 206-1),” 2008, 62 pp.

81. Eyerer, P., and Reinhardt, H.-W., “Ökologische Bilanzierung von Baustoffen und Gebäuden: Wege zu einer ganzheitlichen Bilanzierung. Baupraxis,” Basel, Birkhäuser Verlag, 2000, 248 pp.

82. Schmid, M.; Beuntner, N.; Thienel, K.-C.; and Plank, J., “Amphoteric Superplasticizers for Cements Blended with a Calcined Clay,” Superplasticizers and Other Chemical Admixtures in Concrete, SP-329, J. Liu and J. Plank, eds., American Concrete Institute, Farmington Hills, MI, 2018, pp. 41-54.

83. Beuntner, N.; Lange, S.; and Thienel, K.-C., “Optimierung von Spritzbeton durch calcinierten Ton,” Nachhaltigkeit und Innovation in Baubetrieb und Tunnelbau. Festschrift zum 60. Geburtstag von Uni.-Prof. Dr.-Ing. Jürgen Schwarz, J. Schwarz, ed., Verlag Dr. Hut, München, Germany, 2014, pp. 569-577.

84. Chucholowski, C., Müller, H., and Thienel, K.-C., “Improving the Recyclability, Environmental Compatibility and CO2 Balance of Autoclaved Aerated Concrete by Replacing Sulphate Carrier and Cement with Calcined Clays,” ce/papers, V. 2, No. 4, 2018, pp. 503-512. doi:10.1002/cepa.846


ALSO AVAILABLE IN:

Electronic Materials Journal



  

Edit Module Settings to define Page Content Reviewer