A New Method to Test Concrete Tensile and Shear Strength with Cylindrical Specimens

International Concrete Abstracts Portal

The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

  


Title: A New Method to Test Concrete Tensile and Shear Strength with Cylindrical Specimens

Author(s): Carnot L. Nogueira

Publication: Materials Journal

Volume: 115

Issue: 6

Appears on pages(s): 909-923

Keywords: concrete interface shear strength; helical tensile failure; helical tensile strength; Mode III (anti-plane) facture; shear strength; torsion

DOI: 10.14359/51706942

Date: 11/1/2018

Abstract:
A new method to test concrete tensile strength and anti-plane shear strength using torsional stresses is introduced. The torsion test apparatus can be used with any universal testing machine to test concrete or other materials (such as rocks). The apparatus used to apply torsional loads establishes a new method to evaluate concrete tensile strength activating helical tensile failure modes and determining the helical tensile strength (HTS). The method has several advantages when compared to other standard tests to measure concrete tensile strength: it requires no preparation of the cylindrical specimens, and the HTS can be calculated using a very simple formula. In addition, the new method can be used to measure anti-plane shear strength of concrete (Mode III fracture) and interfacial shear stresses between concrete layers. From a comparison of the HTS and anti-plane shear strength, it could be concluded that these values have the same magnitudes.

Related References:

1. Mehta, P. K., and Monteiro, P. J. M., Concrete: Microstructure, Properties, and Materials, McGraw-Hill, New York, 2014, 704 pp.

2. Van Mier, J. G. M., Fracture Process of Concrete, CRC Press, Boca Raton, FL, 1997.

3. Van Mier, J. G. M., Concrete Fracture—Multiscale Approach, Taylor & Francis/CRC Press, Boca Raton, FL, 2013.

4. Twelvetrees, W. N., Concrete and Reinforced Concrete, Sir Isaac Pitman & Sons, Ltd., London, UK, 1922.

5. Bažant, Z. P., and Pfeiffer, P. A., “Shear Fracture Tests of Concrete,” Materials and Structures, V. 19, No. 2, 1986, pp. 111-121. doi: 10.1007/BF02481755

6. Ingraffea, A. R., and Panthaki, M. J., “Analysis of Shear Fracture Tests of Concrete Beams,” Finite Element Analysis of Reinforced Concrete Structures, Meyer and Okamura, eds., American Society of Civil Engineers, Reston, VA, 1986, pp. 151-173.

7. Bažant, Z. P., and Pfeiffer, P. A., discussion on “Analysis of Shear Fracture tests of Concrete Beams,” by A. R. Ingraffea and M. J. Panthaki, Finite Element Analysis of Reinforced Concrete Structures, American Society of Civil Engineers, Reston, VA, 1986, pp. 174-183.

8. “AASHTO LRFD Bridge Design Specifications,” seventh edition, American Association of State Highway Transportation Officials, Washington, DC, 2014.

9. Tanesi, J.; Ardani, A. A.; and Leavitt, J. C., “Reducing the Specimen Size of the AASHTO T 97 Concrete Flexural Strength Test for Safety and Ease of Handling,” Transportation Research Record: Journal of the Transportation Research Board, V. 2342, No. 1, 2013, pp. 99-105. doi: 10.3141/2342-12

10. ACI Committee 318, “Building Code Requirements for Structural Concrete (ACI 318-14) and Commentary (ACI 318R-14),” American Concrete Institute, Farmington Hills, MI, 2014, 520 pp.

11. ASTM C78/C78M-16, “Standard Test Method for Flexural Strength of Concrete (Using Simple Beam with Third-Point Loading),” ASTM International, West Conshohocken, PA, 2016, 5 pp.

12. ASTM C293/C293M-16, “Standard Test Method for Flexural Strength of Concrete (Using Simple Beam with Center-Point Loading),” ASTM International, West Conshohocken, PA, 2016, 4 pp.

13. Rocco, C.; Guinea, G. V.; Planas, J.; and Elices, M., “Review of the Splitting-Test Standards from a Fracture Mechanics Point of View,” Cement and Concrete Research, V. 31, No. 1, 2001, pp. 73-82. doi: 10.1016/S0008-8846(00)00425-7

14. ASTM C496/C496M-11, “Standard Test Method for Splitting Tensile Strength of Cylindrical Concrete Specimens,” ASTM International, West Conshohocken, PA, 2011, 5 pp.

15. Nogueira, C. L., and Willam, K. J., “Ultrasonic Testing of Damage in Concrete under Uniaxial Compression,” ACI Materials Journal, V. 98, No. 3, May-June 2001, pp. 265-275.

16. Nogueira, C. L., and Rens, K. L., “Effect of Acoustoelasticity on Ultrasonic Pulses and Damage of Concrete under Tensile Stresses,” ACI Materials Journal, V. 115, No. 3, May 2018, pp. 381-391.

17. Nogueira, C. L., “Torsion Testing Devices and Methods,” provisional application 62/427,676, U.S. Patent and Trademark Office, Washington, DC, 2016.

18. Nogueira, C. L., “Torsion Test for Concrete Cylindrical Specimens—Marketing Summary,” University of Colorado Technology Transfer Office, Boulder, CO, 2016.

19. Nogueira, C. L., “Torsion Testing Devices and Methods,” application 15/825,150, U.S. Patent Application, U.S. Patent and Trademark Office, Washington, DC, 2017.

20. Beer, F.; Johnston, E. R.; and Mazurek, D. F., Statics, 11th edition, McGraw-Hill, New York, 2016.

21. Gross, D.; Hauger, W.; Schröder, J.; and Wall, W., Technische Mechanik 1, Springer-Verlag, Berlin, Germany, 2016.

22. Rabbat, B. G., and Russell, H. G., “Friction Coefficient of Steel on Concrete or Grout,” Journal of Structural Engineering, ASCE, V. 111, No. 3, 1985, pp. 505-515. doi: 10.1061/(ASCE)0733-9445(1985)111:3(505)

23. Timoshenko, S., and Young, D. H., Elements of Strength of Materials, fourth edition, D. Van Nostrand, 1962.

24. Popov, E. P., Engineering Mechanics of Solids, second edition, Pearson, London, UK, 1998.

25. Beer, F.; Johnston, E. R.; DeWolf, J.; and Mazurek, D. F., Mechanics of Materials, seventh edition, McGraw-Hill, New York, 2015.

26. ASTM C39/C39M-17b, “Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens,” ASTM International, West Conshohocken, PA, 2017, 8 pp.

27. EN 1992-1-1, “Eurocode 2: Design of Concrete Structures – Part 1-1: General Rules and Rules for Buildings, Brussels, Belgium, 2004.

28. DIN EN 206-1, “Beton – Festlegung, Eigenschaften, Herstellung und Konformität,” Germany, 2000.

29. ABNT NBR 5739, “Concreto – Ensaio de compressão de corpos-de-prova cilíndricos,” Brazil, 2007.

30. Saucier, F.; Bastien, J.; Pigeon, M.; and Fafard, M., “A Combined Shear-Compression Device to Measure Concrete-to-Concrete Bonding,” Experimental Techniques, V. 15, No. 5, 1991, pp. 50-55. doi: 10.1111/j.1747-1567.1991.tb01214.x

31. Shah, S. P.; Swartz, S. E.; and Ouyang, C., Fracture Mechanics of Concrete, Wiley, New York, 1995.

32. Lilliu, G., and Van Mier, J. G. M., “Fracture of Concrete Cylinders Subjected to Torsion,” Advances in Fracture Research, Proceedings of ICF-10, K. Ravi-Chandra, B. L. Karihaloo, T. Kishi, R. O. Ritchie, A. T. Yokobori Jr., and T. Yokobori, eds., Elsevier, 2001. (CD-ROM)

33. Lilliu, G., and Van Mier, J. G. M., “Experimental Investigation of Fracture Processes in Concrete Cylinders Subjected to Torsion,” Proceedings of the Fourth International Conference on Fracture Mechanics of Concrete and Concrete Structures, R. de Borst and J. Mazars, eds., CRC Press, Rotterdam, the Netherlands, 2001, pp. 395-402.

34. Golewski, G. L., and Sadowski, T., “The Fracture Toughness the KIIIc of Concretes with F fly ash (FA) Additive,” Construction and Building Materials, V. 143, 2017, pp. 444-454. doi: 10.1016/j.conbuildmat.2017.03.137

35. Golewski, G. L., and Sadowski, T., “A Study of Mode III Fracture Toughness in Young and Mature Concrete with Fly Ash Additive,” Solid State Phen., V. 254, 2016, pp. 120-125. doi: 10.4028/www.scientific.net/SSP.254.120

36. Wilhelm, T., “Betongedächtnis: Ermittlung historischer Maximalspannungen im Betonquerschnitt,” Beton- und Stahlbetonbau, V. 100, 2005, pp. 231-234. doi: 10.1002/best.200590283

37. Evans, R. H., and Marathe, M. S., “Microcracking and Stress-Strain Curves for Concrete in Tension,” Matériaux et Constructions, V. 1, No. 1, 1968, pp. 61-64. doi: 10.1007/BF02479001

38. Zhen-hai, G., and Xiu-qin, Z., “Investigation of Complete Stress-Deformation Curves for Concrete in Tension,” ACI Materials Journal, V. 84, No. 4, July-Aug. 1987, pp. 278-285.

39. Raphael, J. M., “Tensile Strength of Concrete,” ACI Journal Proceedings, V. 81, No. 2, Mar.-Apr. 1984, pp. 158-165.

40. Chen, X.; Xu, L.; and Bu, J., “Experimental Study and Constitutive Model on Complete Stress-Strain Relations of Plain Concrete in Uniaxial Cyclic Tension,” KSCE Journal of Civil Engineering, V. 9, 2016, pp. 1829-1835.

41. Gopalaratnam, V. S., and Shah, S., “Softening Response of Plain Concrete in Direct Tension,” ACI Journal Proceedings, V. 82, No. 3, May-June 1985, pp. 310-323.

42. Rocco, C.; Guinea, G. V.; Planas, J.; and Elices, M., “Mechanisms of Rupture in Splitting Tests,” ACI Materials Journal, V. 96, No. 1, Jan.-Feb. 1999, pp. 52-60.

43. Hibbeler, R. C., Mechanics of Materials, seventh edition, Pearson, New York, 2008.

44. Guinea, G. V.; Rojo, F. J.; and Elices, M., “Brittle Failure of Dry Spaghetti,” Engineering Failure Analysis, V. 11, No. 5, 2004, pp. 705-714. doi: 10.1016/j.engfailanal.2003.10.006

45. ACI Committee 562, “Code Requirements for Assessment, Repair, and Rehabilitation of Existing Concrete Structures and Commentary (562-16),” American Concrete Institute, Farmington Hills, MI, 2016, 88 pp.

46. ASTM C1583/C1583M-13, “Standard Test Method for Tensile Strength of Concrete Surfaces and the Bond Strength or Tensile Strength of Concrete Repair and Overlay Materials by Direct Tension (Pull-Off Method),” ASTM International, West Conshohocken, PA, 2013, 4 pp.

47. Silfwerbrand, J., “Shear Bond Strength in Repaired Concrete Structures,” Materials and Structures, V. 36, No. 6, 2003, pp. 419-424. doi: 10.1007/BF02481068

48. Silfwerbrand, J., “Bonded Concrete Overlays,” Concrete International, V. 39, No. 5, May 2017, pp. 31-36.

49. Santos, P. M. D., and Júlio, E. N. B. S., “Interface Shear Transfer on Composite Concrete Members,” ACI Structural Journal, V. 111, No. 1, Jan.-Feb. 2014, pp. 113-121.

50. Santos, P. M. D., and Júlio, E. N. B. S., “A State-of-the-Art Review on Shear-Friction,” Engineering Structures, V. 45, 2012, pp. 435-448. doi: 10.1016/j.engstruct.2012.06.036

51. Hindo, K. R., “In-Place Bond Testing and Surface Preparation of Concrete,” Concrete International, V. 12, No. 4, Apr. 1990, pp. 46-48.

52. Geissert, D. G.; Li, S.; Frantz, G. C.; and Stephens, J. E., “Splitting Prism Test Method to Evaluate Concrete-to-Concrete Bond Strength,” ACI Materials Journal, V. 96, No. 3, May-June 1999, pp. 359-366.

53. Iosipescu, N., “New Accurate Procedure for Single Shear Testing of Metals,” Journal of Materials, V. 2, No. 3, 1967, pp. 537-566.

54. Helmick, C. G.; Toker-Beeson, S.; and Tanner, J. E., “Evaluation of Shear and Diagonal Tension in Plain Concrete,” Concrete International, V. 38, No. 1, Jan. 2016, pp. 39-46.

55. ASTM D5379/D5379M-12, “Standard Test Method for Shear Properties of Composite Materials by the V-Notched Beam Method,” ASTM International, West Conshohocken, PA, 2012, 14 pp.

56. Swartz, S. E.; Lu, L.; Tang, L.; and Refai, T., “Mode II Fracture Parameter Estimates for Concrete from Beam Specimens,” Experimental Mechanics, V. 28, No. 2, 1988, pp. 146-153. doi: 10.1007/BF02317565

57. Baghi, H., and Barros, J. A. O., “Shear Properties of the Strain Hardening Cementitious Composite Material,” Journal of Materials in Civil Engineering, ASCE, V. 28, No. 10, 2016, p. 04016093 doi: 10.1061/(ASCE)MT.1943-5533.0001603

58. Reinhardt, H. W.; Ošbolt, J.; Shilang, X.; and Dinku, A., “Shear of Structural Concrete Members and Pure Mode II Testing,” Advanced Cement Based Materials, V. 5, No. 3-4, 1997, pp. 75-85. doi: 10.1016/S1065-7355(96)00003-X

59. van Mier, J. G. M., “Mode II Fracture Localization in Concrete Loaded in Compression,” Journal of Engineering Mechanics, ASCE, V. 135, No. 1, 2009, pp. 1-8. doi: 10.1061/(ASCE)0733-9399(2009)135:1(1)

60. Carpinteri, A., “Interaction between Tensile Strength Failure and Mixed Mode Crack Propagation in Concrete,” Materials and Structures, V. 21, No. 6, 1988, pp. 403-409. doi: 10.1007/BF02472319

61. Swartz, S. E.; Lu, L.; and Tang, L., “Mixed-Mode Fracture Toughness Testing of Concrete Beams in Three-Point Bending,” Materials and Structures, V. 21, No. 1, 1988, pp. 33-40. doi: 10.1007/BF02472526

62. Ballatore, E.; Carpinteri, A.; Ferrara, G.; and Melchiorri, G., “Mixed Mode Fracture Energy of Concrete,” Engineering Fracture Mechanics, V. 35, No. 1-3, 1990, pp. 145-157. doi: 10.1016/0013-7944(90)90192-J

63. Van Mier, J. G. M., and Nooru-Mohamed, M. B., “Geometrical and Structural Aspects of Concrete Fracture,” Engineering Fracture Mechanics, V. 35, No. 4-5, 1990, pp. 617-628. doi: 10.1016/0013-7944(90)90144-6

64. Swartz, S. E., and Taha, M., “Mixed Mode Crack Propagation and Fracture in Concrete,” Engineering Fracture Mechanics, V. 35, No. 1-3, 1990, pp. 137-144. doi: 10.1016/0013-7944(90)90191-I

65. Nooru-Mohamed, M. B.; Schlangen, E.; and van Mier, J. G. M., “Experimental and Numerical Study on the Behavior of Concrete Subjected to Biaxial Tension and Shear,” Advanced Cement Based Materials, V. 1, No. 1, 1993, pp. 22-37. doi: 10.1016/1065-7355(93)90005-9

66. Xu, D., and Reinhardt, H. W., “Softening of Concrete under Torsional Loading,” Fracture of Concrete and Rock: Recent Developments, S. P. Shah, S. E. Swartz, and B. Barr B, eds., Elsevier Applied Science, Amsterdam, the Netherlands,1989, pp. 39-50.

67. Yacoub-Tokatly, Z.; Barr, B.; and Norris, P., “Mode III Fracture–A Tentative Test Geometry,” Fracture of Concrete and Rock: Recent Developments, S. P. Shah, S. E. Swartz, and B. Barr B, eds., Elsevier Applied Science, Amsterdam, the Netherlands, 1989, pp. 596-604.

68. Wang, J. J.-A.; Liu, K. C.; and Naus, D., “A New Test Method for Determining the Fracture Toughness of Concrete Materials,” Cement and Concrete Research, V. 40, No. 3, 2010, pp. 497-499. doi: 10.1016/j.cemconres.2009.09.019


ALSO AVAILABLE IN:

Electronic Materials Journal



  

Edit Module Settings to define Page Content Reviewer