Shear and Flexural Behavior of Autoclaved Aerated Concrete Confined Masonry Walls

International Concrete Abstracts Portal

The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

  


Title: Shear and Flexural Behavior of Autoclaved Aerated Concrete Confined Masonry Walls

Author(s): J. Varela-Rivera, L. Fernandez-Baqueiro, R. Alcocer-Canche, J. Ricalde-Jimenez, and R. Chim-May

Publication: Structural Journal

Volume: 115

Issue: 5

Appears on pages(s): 1453-1462

Keywords: autoclaved aerated concrete; confined masonry walls; flexural behavior; in-plane reverse cyclic loads; shear behavior

DOI: 10.14359/51706828

Date: 9/1/2018

Abstract:
A total of seven full-scale autoclaved aerated concrete confined walls were tested in the laboratory under reverse cyclic loads: four with shear behavior and three with flexural behavior. In the first case, the study variable was the wall aspect ratio, and in the second, the wall axial compressive stress. The performance of walls with shear behavior was characterized by diagonal and flexure-shear cracks. Performance of walls with flexural behavior was defined by yielding of steel longitudinal reinforcement followed by flexure- shear and diagonal cracks. Cracking patterns and lateral loaddrift ratio curves are presented. Equations for shear strength and flexure-shear strength based on experimental data are provided. Flexural strength of walls was validated using flexural theory. Wall drift ratios increased as the aspect ratio increased. Displacement ductilities increased as the axial load decreased.

Related References:

1. ASTM C1693/C1693-11, “Standard Specification for Autoclaved Aerated Concrete (AAC),” ASTM International, West Conshohocken, PA, 2011, 7 pp.

2. Tena-Colunga, A.; Juárez-Ángeles, A.; and Salinas-Vallejo, V. H., “Cyclic Behavior of Combined and Confined Masonry Walls,” Journal of Engineering Structures, V. 31, No. 1, 2009, pp. 240-259. doi: 10.1016/j.engstruct.2008.08.015

3. Cancino, U. M., “Behavior of Autoclaved Aerated Concrete Shear Walls with Low-Strength AAC,” MS thesis, University of Texas at Austin, Austin, TX, 2003, 230 pp.

4. Tanner, J. E.; Varela, J. L.; Klinger, R. E.; and Brightman, M. J., “Seismic Testing of Autoclaved Aerated Concrete Shear-Walls: A Comprehensive Review,” ACI Structural Journal, V. 102, No. 3, May-June 2005, pp. 374-382.

5. Tanner, J. E.; Varela, J. L.; and Klinger, R. E., “Design and Seismic Testing of Two-Story, Full Scale Autoclaved Aerated Concrete Assemblage Specimen,” ACI Structural Journal, V. 102, No. 1, Jan.-Feb. 2005, pp. 114-119.

6. Varela, J. L.; Tanner, J. E.; and Klingner, R. E., “Development of Seismic Force Reduction and Displacement Amplification Factors for Autoclaved Aerated Concrete Structures,” Earthquake Spectra, V. 22, No. 1, 2006, pp. 267-286. doi: 10.1193/1.2166034

7. ACI Committee 530, “Building Code Requirements and Specification for Masonry Structures (TMS 402-13/ACI 530-13/ASCE 5-13; TMS 602-13/ACI 530.1-13/ASCE 6-13),” American Concrete Institute, Farmington Hills, MI, 2013, 212 pp.

8. Penna, A.; Magenes, G.; Calvi, G. M.; and Costa, A. A., “Seismic Performance of AAC Infill and Bearing Walls with Different Reinforcement Solutions,” Proceedings of the 14th International Brick and Block Masonry Conference, Sydney, Australia, Feb. 2008, 10 pp.

9. Tomazevic, M., and Gams, M., “Shaking Table Study and Modelling of Seismic Behavior of Confined AAC Masonry Buildings,” Bulletin of Earthquake Engineering, V. 10, No. 3, 2012, pp. 863-893. doi: 10.1007/s10518-011-9331-x

10. Ravichandran, S. S., and Klingner, R. E., “Behavior of Steel Moment Frames with Autoclaved Aerated Concrete Infills,” ACI Structural Journal, V. 109, No. 1, Jan.-Feb. 2012, pp. 83-90.

11. Mandirola, M.; Penna, A.; Rota, M.; and Magenes, G., “Experimental Assessment of the Shear Response of Autoclaved Aerated Concrete (AAC) Masonry with Flat Truss Bed-Joint Reinforcement,” Proceedings of the 15th International Brick and Block Masonry Conference, Florianopolis, Brazil, June 2012, 10 pp.

12. Yu, J., Cao, J., and Fei, T., “Experimental Study on Improving Seismic Behavior of Load-Bearing Masonry Walls Made of Autoclaved Aerated Concrete,” Transaction of Tianjin University, Tianjin University, Tianjin, China, V. 19, No. 6, Dec. 2013, pp. 419-424.

13. Bose, S., and Rai, D. C., “Behavior of AAC Infilled RC Frame under Lateral Loading,” Proceedings of the 10th National Conference in Earthquake Engineering, Anchorage, AK, July 2014, 11 pp.

14. Meli, R., “Comportamiento Sísmico de Muros de Mampostería (Seismic Behavior of Masonry walls),” Serie Azul: Instituto de Ingeniería, No. 352, UNAM, Mexico City, Mexico, 1979, 141 pp. (in Spanish)

15. San Bartolome, A., and Quiun, D., “Diseño Sísmico de Edificaciones de Albañilería Confinada (Seismic Design of Confined Masonry Structures),” Revista Ciencia, V. 13, No. 2, 2010, pp. 161-185. (in Spanish)

16. Treviño, E. L.; Alcocer, S. M.; Flores, L. E.; Larrua, R.; Zarate, J. M.; and Gallegos, L., “Investigation Experimental del Comportamiento de Muros de Mampostería Confinada de Bloques de Concreto Sometidos a Cargas Laterales Cíclicas Reversibles Reforzados con Acero de Grados 60 y 42 (Experimental Study on the Behavior of Confined Walls Constructed with Concrete Blocks Subjected to Reverse Cyclic Loads),” Proceedings of the XIV National Congress of Structural Engineering, Acapulco, Mexico, Oct. 2004, 60 pp. (in Spanish)

17. Quiroz, L.; Maruyama, Y.; and Zavala, C., “Cyclic Behavior of Peruvian Confined Masonry Walls and Calibration of Numerical Model Using Genetic Algorithms,” Journal of Engineering Structures, V. 75, Sept. 2014, pp. 561-576. doi: 10.1016/j.engstruct.2014.06.035

18. Urzua, D. A.; Padilla, R.; and Loza, R., “Influencia de la Carga Vertical en la Resistencia Sísmica de Muros de Mampostería Confinada con Materiales Típicos de Guadalajara (Influence of Axial Load on the Strength of Confined Masonry Walls),” Proceedings of the XIII National Congress of Structural Engineering, Guadalajara, Mexico, Oct. 2001, 11 pp. (in Spanish)

19. San Bartolome, A.; Quiun, D.; and Torrealva, D., “Seismic Behaviour of a Three-Story Scale Confined Masonry Structure,” Proceedings of the 10th World Conference on Earthquake Engineering, Madrid, Spain, 1992, pp. 3527-3531.

20. Perez, J.; Flores, L.; and Alcocer, S., “An Experimental Study of Confined Masonry Walls with Varying Aspect Ratio,” Earthquake Spectra, V. 31, No. 2, 2015, pp. 945-968. doi: 10.1193/090712EQS284M

21. Flores, L. E.; Mendoza, J. A.; and Reyes, C., “Ensaye de Muros de Mampostería con y sin Refuerzo Alrededor de la Abertura (Testing of Masonry Walls with and without Reinforcement on Openings),” Proceedings of the XIV National Congress of Structural Engineering, Acapulco, Mexico, Oct. 2004, 11 pp. (in Spanish)

22. NTC-M, “Normas Técnicas Complementarias para el Diseño y Construcción de Estructuras de Mampostería (Technical Norms for the Construction and Design of Masonry Structures),” Gaceta Oficial del Distrito Federal, Mexico City, Mexico, 2004, pp. 6-87. (in Spanish)

23. ASTM C1006/C1006-07, “Standard Test Method for Splitting Tensile Strength of Masonry Units,” ASTM International, West Conshohocken, PA, 2007, 3 pp.

24. ASTM C109/C109M-16a, “Standard Test Method for Compressive Strength of Hydraulic Cement Mortars” ASTM International, West Conshohocken, PA, 2016, 10 pp.

25. ASTM C39/C39-16, “Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens,” ASTM International, West Conshohocken, PA, 2016, 7 pp.

26. ASTM A370/A370-15, “Standard Test Methods and Definitions for Mechanical Testing of Steel Products,” ASTM International, West Conshohocken, PA, 2015, 47 pp.

27. ASTM C1660/C1660-09, “Standard Specification for Thin-Bed Mortar for Autoclaved Aerated Concrete (AAC) Masonry,” ASTM International, West Conshohocken, PA, 2009, 3 pp.

28. Edison Hydraulic Load Maintainers, Operation and Maintenance Manual, Edison Hydraulic Load Maintainers, Paradise, CA, Jan. 1994, 62 pp.

29. ASCE-ACI Task Committee 426, “The Shear Strength of Reinforced Concrete Members,” Journal of the Structural Division, V. 99, No. 6, 1973, pp. 1091-1187.

30. Rosado, A. I., “Desempeño Elástico y Plástico del Concreto Fabricado con Agregados Reciclados de Origen Calizo de Residuos de Demolición (Performance of Recycled Concrete Fabricated with Limestone Aggregate),” MS thesis, Universidad Autónoma de Yucatán, Merida, Mexico, 2014, 100 pp. (in Spanish)

31. Moreno, E. I.; Solis, R. G.; Varela, J. L.; and Gomez, M. A., “Resistencia a Tensión del Concreto Elaborado con Agregado Calizo de Alta Absorción (Tensile Strength of Concrete Fabricated with Limestone Aggregate),” Concreto y Cemento,” No. 1, July 2016, pp. 35-45. (in Spanish)

32. Mousa, M. I., “Factors Affecting Bond between Repairing Concrete and Concrete Substrate,” International Journal of Engineering and Innovative Technology, V. 4, No. 11, May 2015, pp. 47-56.

33. ACI Committee 318, “Building Code Requirements for Structural Concrete (ACI 318-4) and Commentary (ACI 318R-14),” American Concrete Institute, Farmington Hills, MI, 2014, 520 pp.

34. Rodriguez, M., and Botero, J. C., “Evaluación del Comportamiento de Barras de Acero de Refuerzo Sometidas a Cargas Monotónicas y Cíclicas Reversibles Incluyendo Pandeo (Behavior of Steel Reinforcing Bars Subjected to Monotonic and Reversed Cyclic loads Including Buckling),” Revista de Ingeniería Sísmica, V. 56, 1997, pp. 9-27. (in Spanish)


ALSO AVAILABLE IN:

Electronic Structural Journal



  

Edit Module Settings to define Page Content Reviewer