Improved Shear Reinforcement for Footings—Maximum Punching Strength

International Concrete Abstracts Portal

The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

  


Title: Improved Shear Reinforcement for Footings—Maximum Punching Strength

Author(s): Dominik Kueres, Marcus Ricker, and Josef Hegger

Publication: Structural Journal

Volume: 115

Issue: 5

Appears on pages(s): 1365-1377

Keywords: column perimeter-depth ratio; footings; maximum shear capacity; punching shear; reinforced concrete; reinforcement; shear span-depth ratio

DOI: 10.14359/51702374

Date: 9/1/2018

Abstract:
Besides significantly higher punching strength, footings and ground plates generally exhibit much steeper shear crack inclinations than flat plates. Thus, punching shear reinforcement elements with inclined bars seem to be more efficient than elements with vertical bars. To account for this observation, a punching shear reinforcement element with inclined bars was developed, especially intended for the application in footings and ground plates. In a first test series, seven punching tests on reinforced concrete footings with the newly developed punching shear reinforcement, failing inside the shear-reinforced zone, were performed. Based on the test results, seven further tests were conducted to investigate the maximum punching shear capacity of the new punching shear reinforcement. The test parameters included the shear span-depth ratio av/d, the column perimeter-depth ratio u0/d, the concrete compressive strength fc,cyl, and the layout of punching shear reinforcement. Compared to stirrups and studs, the improved punching shear reinforcement reached significantly larger failure loads. The high efficiency was also confirmed by a comparison of the experimental results with the ACI 318-14 provisions.

Related References:

1. Talbot, A.N., “Reinforced Concrete Wall Footings and Column Footings,” Engineering Experiment Station, University of Illinois, 1913, reprint 1925 (Publications of the Engineering Experiment Station, Bulletin No. 67), 114 pp.

2. Richart, F.E., “Reinforced Concrete Wall and Column Footings,” ACI Journal Proceedings, V. 51, No. 2, Feb. 1948, pp. 97-127 (Part 1), No. 3, Mar. 1948, pp. 237-261 (Part 2).

3. Dieterle, H., and Steinle, A., “Blockfundamente für Stahlbetonfertigstützen,” Deutscher Ausschuss für Stahlbeton, Heft 326, Ernst & Sohn, Berlin, Germany, 1981, 62 pp.

4. Dieterle, H., and Rostásy, F. S., “Tragverhalten quadratischer Einzelfundamente aus Stahlbeton,” Deutscher Ausschuss für Stahlbeton, Heft 387, Ernst & Sohn, Berlin, Germany, 1987. pp. 5-91.

5. Hallgren, M.; Kinnunnen, S.; and Nylander, B., “Punching Shear Tests on Column Footings,” Nordic Concrete Research, V. 21, No. 3, Mar. 1998, pp. 1-22.

6. Hegger, J.; Sherif, A. G.; and Ricker, M., “Experimental Investigations on Punching Behavior of Reinforced Concrete Footings,” ACI Structural Journal, V. 103, No. 4, July-Aug. 2006, pp. 604-613.

7. Hegger, J.; Ricker, M.; Ulke, B.; and Ziegler, M., “Investigations on the Punching Behaviour of Reinforced Concrete Footings,” Engineering Structures, V. 29, No. 9, 2007, pp. 2233-2241. doi: 10.1016/j.engstruct.2006.11.012

8. Hegger, J.; Ricker, M.; and Sherif, A. G., “Punching Strength of Reinforced Concrete Footings,” ACI Structural Journal, V. 106, No. 5, Sept.-Oct. 2009, pp. 706-716.

9. Siburg, C., and Hegger, J., “Experimental Investigations on the Punching Behaviour of Reinforced Concrete Footings with Structural Dimensions,” Structural Concrete, V. 15, No. 3, 2014, pp. 331-339. doi: 10.1002/suco.201300083

10. Simões, J. T.; Bujnak, J.; Ruiz, M. F.; and Muttoni, A., “Punching Shear Tests on Compact Footings with Uniform Soil Pressure,” Structural Concrete, V. 17, No. 4, 2016, pp. 603-617. doi: 10.1002/suco.201500175

11. Moe, J., “Shearing Strength Of Reinforced Concrete Slabs And Footings Under Concentrated Loads,” Development Department Bulletin D47, Portland Cement Association, Skokie, IL, 1961, 135 pp.

12. Regan, P. E., and Braestrup, M. W., “Punching Shear in Reinforced Concrete,” CEB-Bulletin d’Information No. 168, Lausanne, Switzerland, 1985, 232 pp.

13. Kordina, E. K., and Nölting, D., “Tragverhalten von ausmittig beanspruchten Einzelfundamenten aus Stahlbeton,” Test Report, Braunschweig University of Technology, Institute of Building Materials, Concrete Construction and Fire Protection, 1981, 155 pp.

14. Wieneke, K.; Kueres, D.; Siburg, C.; and Hegger, J., “Investigations on the Punching Shear Behavior of Eccentrically Loaded Footings,” Structural Concrete, V. 17, No. 6, 2016, pp. 1047-1058. doi: 10.1002/suco.201500127

15. Pilakoutas, K., and Li, X., “Alternative Shear Reinforcement for Reinforced Concrete Flat Slabs,” Journal of Structural Engineering, ASCE, V. 129, No. 9, 2003, pp. 1164-1172. doi: 10.1061/(ASCE)0733-9445(2003)129:9(1164)

16. Park, H.-G.; Ahn, K.-S.; Choi, K.-K.; and Chung, L., “Lattice Shear Reinforcement for Slab-Column Connections,” ACI Structural Journal, V. 104, No. 3, May-June 2007, pp. 294-303.

17. Hegger, J.; Sherif, A. G.; Kueres, D.; and Siburg, C., “Efficiency of Various Punching Shear Reinforcement Systems for Flat Slabs,” ACI Structural Journal, V. 114, No. 3, May-June 2016, pp. 631-642.

18. Einpaul, J.; Brantschen, F.; Ruiz, M. F.; and Muttoni, A., “Performance of Punching Shear Reinforcement under Gravity Loading: Influence of Type and Detailing,” ACI Structural Journal, V. 113, No. 4, July-Aug. 2016, pp. 827-838. doi: 10.14359/51688630

19. Beutel, R., and Hegger, J., “The Effect of Anchorage on the Effectiveness of the Shear Reinforcement in the Punching Zone,” Cement and Concrete Composites, V. 24, No. 6, 2002, pp. 539-549. doi: 10.1016/S0958-9465(01)00070-1

20. Fernandez Ruiz, M., and Muttoni, A., “Applications of Critical Shear Crack Theory to Punching of Reinforced Concrete Slabs with Transverse Reinforcement,” ACI Structural Journal, V. 106, No. 4, July-Aug. 2009, pp. 485-494.

21. Hegger, J.; Häusler, F.; and Ricker, M., “Zur maximalen Durchstanztragfähigkeit von Flachdecken,” Beton- und Stahlbetonbau, V. 102, No. 11, 2007, pp. 770-777. doi: 10.1002/best.200700584

22. Andrä, H.P., “Zum Tragverhalten von Flachdecken mit Dübelleisten-Bewehrung im Auflagerbereich,” Beton- und Stahlbetonbau, V. 76, No. 3, Mar. 1981, pp. 53-57 (Part 1), No. 4, Apr. 1981, pp.100-104 (Part 2).

23. Mokthar, A. S.; Ghali, A.; and Dilger, W., “Stud Shear Reinforcement for Flat Concrete Plates,” ACI Journal Proceedings, V. 82, No. 5, Sept.-Oct. 1985, pp. 676-683.

24. Ricker, M., and Häusler, F., “European Punching Design Provisions for Double-Headed Studs,” Proceedings of the Institution of Civil Engineers. Structures and Buildings, V. 167, No. 8, 2014, pp. 495-506. doi: 10.1680/stbu.13.00047

25. Ferreira, M. P.; Melo, G. S.; Regan, P. E.; and Vollum, R. L., “Punching of Reinforced Concrete Flat Slabs with Double-Headed Shear Reinforcement,” ACI Structural Journal, V. 111, No. 2, Mar.-Apr. 2014, pp. 363-374.

26. Kueres, D.; Ricker, M.; and Hegger, J., “Improved Shear Reinforcement for Footings—Punching Strength inside Shear-Reinforced Zone,” ACI Structural Journal, V. 114, No. 6, Nov.-Dec. 2017, pp. 1445-1456. doi: 10.14359/51689499

27. ACI Committee 318, “Building Code Requirements for Structural Concrete (ACI 318-14) and Commentary (ACI 318R-14), American Concrete Institute, Farmington Hills, MI, 2014, 520 pp.

28. DIN EN 1992-1-1:2011-01, “Eurocode 2: Bemessung und Konstruktion von Stahlbeton- und Spannbetontragwerken – Teil 1-1: Allgemeine Bemessungsregeln und Regeln für den Hochbau,” Deutsche Fassung EN 1992-1-1:2004 + AC:2010, 241 pp.

29. DIN EN 1992-1-1/NA:2013-04, “Nationaler Anhang – National festgelegte Parameter – Eurocode 2: Bemessung und Konstruktion von Stahlbeton- und Spannbetontragwerken – Teil 1-1: Allgemeine Bemessungsregeln und Regeln für den Hochbau, 97 pp

30. Beutel, R., “Durchstanzen schubbewehrter Flachdecken im Bereich von Innenstützen,” PhD thesis, RWTH Aachen University, Institute of Structural Concrete, 2003, 369 pp.

31. Siburg, C., “Zur einheitlichen Bemessung gegen Durchstanzen in Flachdecken und Fundamenten,” PhD thesis, Institute of Structural Concrete, RWTH Aachen University, 2014, 360 pp.

32. Elstner, R. C., and Hognestad, E., “Shearing Strength of Reinforced Concrete Slabs,” ACI Journal Proceedings, V. 53, No. 7, July 1956, pp. 29-58.

33. Gardner, N. J., “Relationship of the Punching Shear Capacity of Reinforced Concrete Slabs with Concrete Strength,” ACI Structural Journal, V. 87, No. 1, Jan.-Feb. 1990, pp. 66-71.

34. Hallgren, M., and Kinnunen, S., “Increase of Punching Shear Capacity by Using High Strength Concrete,” Proceedings of 4th International Symposium on Utilization of High-Strength/High-Performance Concrete, Paris, France, 1996, pp. 1037-1046.

35. Ramdane, K. E., “Punching Shear of High Performance Concrete Slabs,” Proceedings of 4th International Symposium on Utilization of High-Strength/High-Performance Concrete, Paris, France, 1996, pp. 1015-1026.

36. fib “Model Code for Concrete Structures 2010,” Ernst & Sohn, Berlin, Germany, 2013, 434 pp.

37. Regan, P. E., “Symmetric Punching of Reinforced Concrete Slabs,” Magazine of Concrete Research, V. 38, No. 136, 1986, pp. 115-128. doi: 10.1680/macr.1986.38.136.115

38. Regan, P. E., “Punching of Slabs under Highly Concentrated Loads,” Structures and Buildings, V. 157, Apr. 2004, pp. 165-171.

39. Hegger, J.; Häusler, F.; and Ricker, M., “Zur Durchstanzbemessung von Flachdecken nach Eurocode 2,” Beton- und Stahlbetonbau, V. 103, No. 2, 2008, pp. 93-102. doi: 10.1002/best.200700596

40. Kueres, D.; Siburg, C.; Herbrand, M.; Classen, M.; and Hegger, J., “Uniform Design Method for Punching Shear in Flat Slabs and Column Bases,” Engineering Structures, V. 136, 2017, pp. 149-164. doi: 10.1016/j.engstruct.2016.12.064


ALSO AVAILABLE IN:

Electronic Structural Journal



  

Edit Module Settings to define Page Content Reviewer