Title:
Measurement and Prediction of Thermal Conductivity of Cement Paste
Author(s):
Daniel P. Hochstein and Christian Meyer
Publication:
Materials Journal
Volume:
113
Issue:
3
Appears on pages(s):
317-322
Keywords:
cement paste; effective thermal conductivity; lightweight concrete; thermal conductance; thermal conductivity; thermal diffusivity
DOI:
10.14359/51688643
Date:
5/1/2016
Abstract:
A model is developed that predicts the effective thermal conductivity of cement paste. It is based on a lumped parameter model, which considers both the porosity and degree of saturation of the cement paste. Existing relationships are used to compute the porosity and degree of saturation based on the water-cement ratio (w/c) and the relative humidity. The model is calibrated for oven-dry cement paste and the data closely matches values reported in the literature. As the w/c increases, the thermal conductivity of the cement paste decreases due to the addition of pore space. Additionally, predictions are made for fully saturated cement paste. Experimental values for the thermal conductivity were determined using the flash method. The results indicate that a lumped parameter model can be used to predict the effective thermal conductivity of cement paste.
Related References:
1. Kim, K.; Jeon, S.; Kim, J.; and Yang, S., “An Experimental Study on Thermal Conductivity of Concrete,” Cement and Concrete Research, V. 33, No. 3, 2003, pp. 363-371. doi: 10.1016/S0008-8846(02)00965-1
2. Choktaweekarn, P.; Saengsoy, W.; and Tangtermsirikul, S., “A Model for Predicting the Thermal Conductivity of Concrete,” Magazine of Concrete Research, V. 61, No. 4, 2009, pp. 271-280. doi: 10.1680/macr.2008.00049
3. Valore, R. C., “Calculation of U-Values of Hollow Concrete Masonry,” Concrete International, V. 2, No. 2, Feb. 1980, pp. 40-63.
4. Tong, F.; Jing, L.; and Zimmerman, R. W., “An Effective Thermal Conductivity Model of Geological Porous Media for Coupled Thermo-Hydro-Mechanical Systems with Multiphase Flow,” International Journal of Rock Mechanics and Mining Sciences, V. 46, No. 8, 2009, pp. 1358-1369. doi: 10.1016/j.ijrmms.2009.04.010
5. Wiener, O., “Die Theorie des Mischkörpers für das Feld der stationären Strömung I. Die Mittelwertsväze für Kraft, Polarisation und Energie, Der Abhandlungen der Mathematisch-Physischen Klasse der Königl,” Sächsischen Gesellschaft der Wissenschaften, 1912, pp. 509-604.
6. Liu, L. P., “Hashin-Shtrikman Bounds and Their Attainability for Multi-Phase Composites,” Proceedings of the Royal Society A: Mathamatical, Physical, and Engineering Sciences, V. 466, No. 2124, 2007, pp. 3693-3713.
7. Carson, J. K.; Lovatt, S. J.; Tanner, D. J.; and Cleland, A. C., “Thermal Conductivity Bounds for Isotropic, Porous Materials,” International Journal of Heat and Mass Transfer, V. 48, No. 11, 2005, pp. 2150-2158. doi: 10.1016/j.ijheatmasstransfer.2004.12.032
8. ACI Committee 122, “Guide to Thermal Properties of Concrete and Masonry Systems (ACI 122R-02),” American Concrete Institute, Farmington Hills, MI, 2002, 21 pp.
9. Xu, Y., and Chung, D. D. L., “Effect of Sand Addition on the Specific Heat and Thermal Conductivity of Cement,” Cement and Concrete Research, V. 30, No. 1, 2000, pp. 59-61. doi: 10.1016/S0008-8846(99)00206-9
10. Fu, X., and Chung, D. D. L., “Effects of Silica Fume, Latex, Methylcellulose, and Carbon Fibers on the Thermal Conductivity and Specific Heat of Cement Paste,” Cement and Concrete Research, V. 27, No. 12, 1997, pp. 1799-1804. doi: 10.1016/S0008-8846(97)00174-9
11. Powers, T. C., and Brownyard, T. L., “Studies of the Physical Properties of Hardened Portland Cement Paste,” ACI Journal Proceedings, V. 43, No. 9, Sept. 1946, pp. 469-504.
12. Hansen, T. C., “Physical Structure of Hardened Cement Paste. A Classical Approach,” Materials and Structures, V. 19, No. 6, 1986, pp. 423-436. doi: 10.1007/BF02472146
13. Brunauer, S.; Emmett, P. H.; and Teller, E., “Adsorption of Gases in Multimolecular Layers,” Journal of the American Chemical Society, V. 60, No. 2, 1938, pp. 309-319. doi: 10.1021/ja01269a023
14. Brunauer, S.; Skalny, J.; and Bodor, E. E., “Adsorption on Nonporous Solids,” Journal of Colloid and Interface Science, V. 30, No. 4, 1969, pp. 546-552. doi: 10.1016/0021-9797(69)90423-8
15. Hagymassy, J. Jr.; Odler, I.; Yudenfreund, M.; Skalny, J.; and Brunauer, S., “Pore Structure Analysis by Water Vapor Adsorption. III. Analysis of Hydrated Calcium Silicates and Portland Cements,” Journal of Colloid and Interface Science, V. 38, No. 1, 1972, pp. 20-34. doi: 10.1016/0021-9797(72)90215-9
16. Mikhail, R. S., and Abo-El-Enein, S. A., “Studies on Water and Nitrogen Adsorption on Hardened Cement Pastes I: Development of Surface in Low Porosity Pastes,” Cement and Concrete Research, V. 2, No. 4, 1972, pp. 401-414. doi: 10.1016/0008-8846(72)90056-7
17. Xi, Y.; Bažant, Z. P.; and Jennings, H. M., “Moisture Diffusion in Cementitious Materials: Adsorption Isotherms,” Advanced Cement Based Materials, V. 1, No. 6, 1994, pp. 248-257. doi: 10.1016/1065-7355(94)90033-7
18. Tsilingiris, P. T., “Thermophysical and Transport Properties of Humid Air at Temperature Range between 0 and 100°C,” Energy Conservation and Management, V. 49, No. 5, 2008, pp. 1098-1110. doi: 10.1016/j.enconman.2007.09.015
19. Rohsenow, W. M.; Hartnett, J. P.; and Cho, Y. I., Handbook of Heat Transfer, third edition, McGraw-Hill, New York, 1998, 1344 pp.
20. ASTM E1461-07, “Standard Test Method for Thermal Diffusivity by the Flash Method,” ASTM International, West Conshohocken, PA, 2007, 11 pp.
21. Cowan, R. D., “Pulse Method of Measuring Thermal Diffusivity at High Temperatures,” Journal of Applied Physics, V. 34, No. 4, 1963, pp. 926-927. doi: 10.1063/1.1729564