International Concrete Abstracts Portal

Showing 1-5 of 53 Abstracts search results

Document: 

SP360

Date: 

March 1, 2024

Author(s):

ACI Committee 440

Publication:

Symposium Papers

Volume:

360

Abstract:

The 16th International Symposium on Fiber-Reinforced Polymer (FRP) Reinforcement for Concrete Structures (FRPRCS-16) was organized by ACI Committee 440 (Fiber-Reinforced Polymer Reinforcement) and held on March 23 and 24, 2024, at the ACI Spring 2024 Convention in New Orleans, LA. FRPRCS-16 gathers researchers, practitioners, owners, and manufacturers from the United States and abroad, involved in the use of FRPs as reinforcement for concrete and masonry structures, both for new construction and for strengthening and rehabilitation of existing structures. FRPRCS is the longest running conference series on the application of FRP in civil construction, commencing in Vancouver, BC, in 1993. FRPRCS has been one of the two official conference series of the International Institute for FRP in Construction (IIFC) since 2018 (the other is the CICE series). These conference series rotate between Europe, Asia, and the Americas, with alternating years between CICE and FRPRCS. The ACI convention has previously cosponsored the FRPRCS symposium in Anaheim (2017), Tampa (2011), Kansas City (2005), and Baltimore (1999). This Special Publication contains a total of 52 peer-reviewed technical manuscripts from 20 different countries from around the world. Papers are organized in the following topics: (1) FRP Bond and Anchorage in Concrete Structures; (2) Strengthening of Concrete Structures using FRP Systems; (3) FRP Materials, Properties, Tests and Standards; (4) Emerging FRP Systems and Successful Project Applications; (5) FRP-Reinforced Concrete Structures; (6) Advances in FRP Applications in Masonry Structures; (7) Seismic Resistance of FRP-Reinforced/Strengthened Concrete Structures; (8) Behavior of Prestressed Concrete Structures; (9) FRP Use in column Applications; (10) Effect of Extreme Events on FRP-Reinforced/Strengthened Structures; (11) Durability of FRP Systems; and (12) Advanced Analysis of FRP Reinforced Concrete Structures. The breadth and depth of the knowledge presented in these papers is clear evidence of the maturity of the field of composite materials in civil infrastructure. The ACI Committee 440 is witness to this evolution, with its first published ACI CODE-440.11, “Building Code Requirements for Structural Concrete with Glass Fiber Reinforced Polymer (CFRP) Bars,” published in 2022. A second code document on fiber reinforced polymer for repair and rehabilitation of concrete is under development. The publication of the sixteenth volume in the symposium series could not have occurred without the support and dedication of many individuals. The editors would like to recognize the authors who diligently submitted their original papers; the reviewers, many of them members of ACI Committee 440, who provided critical review and direction to improve these papers; ACI editorial staff who guided the publication process; and the support of the American Concrete Institute (ACI) and the International Institute for FRP in Construction (IIFC) during the many months of preparation for the Symposium.

DOI:

10.14359/51740670


Document: 

SP-360_18

Date: 

March 1, 2024

Author(s):

Mohamed Bouabidi, Slimane Metiche, Radhouane Masmoudi.

Publication:

Symposium Papers

Volume:

360

Abstract:

The current market of utility poles is growing rapidly. The dominant materials that are used for this purpose are generally wood, steel, concrete, and fiber-reinforced polymers (FRP). FRP poles are gaining wide acceptance for what they provide in terms of strength and durability, lack of maintenance and a high strength to weight ratio. Hybrid structures can combine the best properties of the materials used, where each part enhances the structure to provide a balanced structure. This study evaluates a hybrid structure composed of three main layers, an outer FRP shell, a hollow concrete core and an inner hollow steel tube, this whole system is to be utilized as a tapered utility pole. The outer FRP shell provides protection and enhances the strength of the pole, the concrete core provides stiffness, and the inner steel tube enhances the flexural performance while reducing the volume in consequence the weight of the structure compared to a fully filled pole. A new design for a 12-feet long hybrid FRP pole using finite element is presented in this paper. The design was based on a parametric study evaluating the effect of key-design parameters (i.e., the thickness of FRP, the volume and strength of the concrete, the thickness and diameter of the steel tube). Concrete strength affected the general performance of the pole, the decrease in concrete strength due to utilizing lightweight concrete was compensated with increasing the FRP pole thickness. For the same pole configuration, with incremental variation of the FRP thickness values from 3 mm to 7 mm up to the initial concrete cracking load, no significant variation of the pole top deflection was observed. However, at failure load the increase of FRP thickness from 3 mm to 7 mm decreased the ultimate tip deflection by 50%. New hybrid utility poles have the potential to be an interesting alternative solution to the conventional poles as they can provide better durability and mechanical performances.

DOI:

10.14359/51740630


Document: 

SP-360_15

Date: 

March 1, 2024

Author(s):

Alireza Sadat Hosseini and Pedram Sadeghian

Publication:

Symposium Papers

Volume:

360

Abstract:

The compressive strength of glass fiber-reinforced polymer (GFRP) rebars is investigated and a new test method is proposed. The program consists of three test series. In Test Series 1, the strengths and weaknesses of the test methodology outlined in ASTM D695-15 were explored. Specimens with varying length-to-diameter ratios were prepared and tested. Premature failure was observed, and longitudinal splitting was the dominant failure mode. Test Series 2 aimed to prevent failure initiation at the ends by using steel clamps. The clamps confined the specimen ends and prevented failure propagation. The compressive strengths showed an average of around 70% the tensile strength. In Test Series 3, an advanced fixture was designed to overcome the limitations of the previous series by including clamping parts and vertical steel bars. Three different loading speeds were employed, and an average compressive strength of 75% of the tensile strength was found. The tests were followed by a statistical analysis indicating a significant difference between the results of the three test methods. The proposed test method offers a practical and reusable approach for evaluating the compressive strength of GFRP rebars. However, further analysis is recommended for a more comprehensive understanding of the compressive behavior of these rebars.

DOI:

10.14359/51740627


Document: 

SP-360_16

Date: 

March 1, 2024

Author(s):

Ahmed Khalil, Rami A. Hawileh, and Mousa Attom

Publication:

Symposium Papers

Volume:

360

Abstract:

This study explores technological advancements enabling the utilization of GFRP bars in concrete structures, particularly in coastal areas. However, GFRP bars often encounter reduced bend strength at specific bend locations, which may pose a challenge in their practical application. Various properties such as the strength of bent GFRP bars are crucial for quality assurance, yet existing testing methods stated in ASTM D7914M-21 and ACI 440.3R-15 have limitations when applied to different GFRP bent shapes. Furthermore, those methods require special precautions to ensure symmetry and avoid eccentricities in specimens. To address these challenges, CSA S807:19 introduced a simpler standardized testing procedure that involves embedding a single L-shaped GFRP stirrup in a concrete block. However, the specified large block size in CSA S807:19 Annex E may pose difficulties for both laboratory and on-site quality control tests. Therefore, CSA S807:19 Annex E (Clause 7.1.2b) permits the use of a customized block size, as long as it meets the bend strength of the FRP bars without causing concrete splitting. To date, very few prior research has explored the use of custom block sizes. Therefore, this study aims to thoroughly investigate the strength of bent FRP bars with custom block sizes and without block confinement. Such an investigation serves to highlight the user-friendliness and efficiency of the CSA S807:19 Annex E method. The study recommends two block sizes: 200x400x300 mm (7.87x15.75x11.81 in) for bars <16 mm (0.63 in) diameter and 200x200x300 mm (7.87x7.87x11.81 in) for bars <12 mm (0.39 in). Additionally, the study cautions against using confinement reinforcement, especially with smaller blocks, as it could interfere with the embedded bent FRP bar. Furthermore, the study suggests incorporating additional tail length to mitigate the debonding effects resulting from fixing the strain gauges to the bent portion of the embedded FRP bar. By exploring these modifications, the study seeks to enhance the effectiveness of the testing procedure and expand its practical application for both laboratory and on-site quality assurance. The findings hold implications for the reliable testing of GFRP bars' strength, advancing their use as reinforcement in concrete structures.

DOI:

10.14359/51740628


Document: 

SP-360_17

Date: 

March 1, 2024

Author(s):

Faisal Mukhtar

Publication:

Symposium Papers

Volume:

360

Abstract:

The first phase of this work uses experimental evidence to critique some shortcomings of the so-called improved double-lap bond shear tests regarding their limited application to wet layup fiber-reinforced polymer (FRP) and their inapplicability to pultruded FRP laminates. Even in the case of the wet layup FRP, the study provides some evidence of high chances of obtaining undesirable fiber rupture that preclude the use of the results as reliable means for interpreting the FRP-concrete bond-slip models. Further proposed modifications to overcome these challenges are provided by designing a convertible bond tester applicable to both wet layup and pultruded FRP laminates. Apart from the application of the apparatus to FRP-concrete bond assessment under pure double shear, it proved to be applicable to conducting mixed-mode bond tests. The second phase of the work upgrades the so-designed test apparatus to make it convertible to bond testing of other variants (near-surface mounted [NSM] FRP bars/strips, fiber-reinforced cementitious mortar [FRCM], etc.) of strengthening systems without developing a different apparatus for each. The apparatus allows testing the NSM FRP-concrete bond in a novel manner compared to the traditional practice. Also, given the absence of mixed-mode studies for FRCM, the apparatus provides a pioneer means of conducting the same.

DOI:

10.14359/51740629


12345...>>

Results Per Page 





ABOUT THE INTERNATIONAL CONCRETE ABSTRACTS PORTAL

  • The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

Edit Module Settings to define Page Content Reviewer