ACI Global Home Middle East Region Portal Western Europe Region Portal
Email Address is required Invalid Email Address
In today’s market, it is imperative to be knowledgeable and have an edge over the competition. ACI members have it…they are engaged, informed, and stay up to date by taking advantage of benefits that ACI membership provides them.
Read more about membership
Learn More
Become an ACI Member
Topics In Concrete
Home > Publications > International Concrete Abstracts Portal
The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.
Showing 1-5 of 17 Abstracts search results
Document:
SP133-01
Date:
September 1, 1992
Author(s):
Edward G. Nawy
Publication:
Symposium Papers
Volume:
133
Abstract:
This paper presents the state of the art in evaluating flexural crack development and control of macrocracking. It is based on extensive research over the past five decades, in the United States and overseas, in the area of macrocracking in reinforced and prestressed concrete beams and in two-way action slabs and plates With the advent of limit states theories that generally lead to economic proportioning of members, control of cracking has become essential to maintain the integrity and esthetics of concrete structures. The trend is stronger than ever in better utilization of current concrete strengths, use of higher strength concretes that include super-strength concretes of 20,000 psi (138 MPa) compressive strength and higher, and increased application of prestressed concrete concepts. All these trends require closer control of serviceability requirements in cracking and deflection. Design expressions are given for the control of cracking in reinforced concrete beams and thick one-way slabs; prestressed, pretensioned, and post-tensioned flanged beams; and reinforced concrete two-way action structural floor slabs and plates. In addition, recommendations are given for the maximum tolerable flexural crack widths in concrete elements.
DOI:
10.14359/3131
SP133-02
Andrew Scanlon and Ross B. Corotis
The American Concrete Institute, Standard 318, Building Code Requirements for Reinforced Concrete have permitted the design of reinforced concrete structures in accordance with limit state principles using load and resistance factors since 1963. A probabilistic assessment of these factors and implied safety levels is made, along with consideration of alternate factor values and formats. A discussion of issues related to construction safety and safety of existing structures is included.
10.14359/3138
SP133-03
M. Z. Cohn an Z. Lounis
An approach that integrates serviceability control with the ultimate limit state (ULS) design is presented. Each serviceability limit (SLS) is related to an amount of moment redistribution that corresponds to the permissible values of the crack widths, deflections, and stresses under service conditions. A design that simultaneously satisfies the specified ULS and SLS criteria may be obtained if the assigned moment redistribution percentages y do not exceed the recommended redistribution limits for serviceability control. The proposed approach integrates all relevant design criteria via the moment redistribution percentage y, and may be used within the framework of ACI 318-89 or other standard codes. The approach allows a direct extension to existing nonlinear, multicriteria, and optimal design methods.
10.14359/3143
SP133-05
B. Vijaya Rangan
The paper presents a summary of treatment of serviceability design in the current Australian Code, AS 3600-1988. The backgrounds to the code rules with regard to control of deflection and crack widths are presented. The provisions for durability design of concrete structures are also discussed.
10.14359/3148
SP133-06
Andrew Scanlon and Libanio Pinheiro
The treatment of design for deflection control in current practice is empirical, and relies largely on allowable computed deflections that were established on the basis of experience gained at a time when deflection control was not a critical issue in most cases. In this paper the current deterministic approach to deflection control is compared with design for safety, which is based on probability considerations.
10.14359/3154
Results Per Page 5 10 15 20 25 50 100
Edit Module Settings to define Page Content Reviewer