International Concrete Abstracts Portal

International Concrete Abstracts Portal

The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

Showing 1-5 of 22 Abstracts search results

Document: 

SP124-19

Date: 

September 1, 1990

Author(s):

T. S. Krishnamoorthy, V. S. Parameswaran, M. Neelamegam, and K. Balasubramanian

Publication:

Symposium Papers

Volume:

124

Abstract:

Precast thin ferrocement planks have replaced wood for a variety of applications. Present knowledge about joining them using steel bolts or similar means is very limited. While bolted connections are commonly employed in steel construction, their suitability for connecting precast reinforced concrete or ferrocement elements is yet to be fully investigated, particularly when subjected to both bending and direct tension. A series of tests were carried out at the Structural Engineering Research Centre, Madras, India, on precast ferrocement planks connected together using steel bolts for transferring tension and flexural moment

DOI:

10.14359/3356


Document: 

SP124-10

Date: 

September 1, 1990

Author(s):

N. W. Hanson, J. J. Roller, J. I. Daniel, and T. L. Weinmann

Publication:

Symposium Papers

Volume:

124

Abstract:

Thin-walled, nonload-bearing exterior building facade panels of glass fiber reinforced concrete (GFRC) are manufactured by the spray-up process. Controlled factory conditions with strict attention to quality control are essential to help assure manufacture of a high-quality product. Furthermore, careful attention to installation and erection procedures cannot be overlooked. Paper describes the authors' experiences during their involvement in several major GFRC facade installations. Observations made during successful GFRC panel applications, and lessons learned in evaluation of GFRC facade failures, have formed the basis for development of an effective Quality Control/Quality Assurance (QC/QA) program that has been successfully implemented. Paper addresses QC/QA aspects of panel manufacture and installation that go beyond guidelines given in the PCI Recommended Practice. Methodologies presented in this paper will be a valuable tool for owners, designers, manufacturers, and contractors participating in the manufacture and installation of GFRC facades.

DOI:

10.14359/3505


Document: 

SP124-20

Date: 

September 1, 1990

Author(s):

A. Bentur, S. Mindless, and c. Yan

Publication:

Symposium Papers

Volume:

124

Abstract:

Thin-section fiber reinforced concrete (FRC) panels may be subjected to localized impact. In this study, thin sheet FRC materials, made with asbestos fibers in different matrixes, were tested under impact loading, using a drop-weight instrumented impact machine. The impact properties were characterized in terms of the peak bending load and the fracture energy (computed as the area under the load-deflection curve). Companion specimens were tested under static loading. The specimen dimensions were about 200 mm wide, 600 mm long, and 6 to 12.7 mm thick. In all cases, the peak bending loads were considerably higher under impact loading than under static loading; however, the fracture energies were always higher under static loading. These effects can be explained in terms of the porosity of the interfacial matrix, and the degree of bundle separation of the asbestos fibers.

DOI:

10.14359/2835


Document: 

SP124-05

Date: 

September 1, 1990

Author(s):

Parviz Soroushian, Ziad Bayasi, and Ataullah Khan

Publication:

Symposium Papers

Volume:

124

Abstract:

A cementitious matrix capable of dispersing fibers using conventional mixing techniques was developed. The effects of reinforcing this matrix with different volume fractions (0 to 2 percent) of aramid fibers ranging in length from 1/8 to 1/2 in. (3 to 12.7 mm) on the composite material performance in the fresh and hardened states were assessed experimentally. The effects of matrix mix proportions on the fibrous material properties were also investigated. The test data generated in this study indicated that improvements in strength and toughness characteristics of cementitious materials can be achieved through aramid fiber reinforcement, with no need to use specialized manufacturing techniques.

DOI:

10.14359/2267


Document: 

SP124-06

Date: 

September 1, 1990

Author(s):

P. Soroushian and S. Marikunte

Publication:

Symposium Papers

Volume:

124

Abstract:

A brief review of the literature on cellulose fiber reinforced cement is presented, followed by the results of an experimental study concerned with the effects of mechanical and chemical pulps on the performance characteristics of neat cement paste in the fresh and hardened states. The mix proportions and manufacturing techniques used in this study for the production of cellulose-cement composites are reviewed. The air content, setting time, and drop in workability with time are compared for plain cementitious materials and those reinforced with 1 and 2 percent mass fractions of mechanical and chemical pulps. The flexural and compressive strength and toughness characteristics, impact resistance, specific gravity, and water absorption capacity of plain and fibrous materials are also compared. Effects of moisture content on the flexural performance of plain cementitious materials and those reinforced with mechanical pulp are discussed.

DOI:

10.14359/2277


12345

Results Per Page 




Edit Module Settings to define Page Content Reviewer