International Concrete Abstracts Portal

International Concrete Abstracts Portal

The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

Showing 1-5 of 39 Abstracts search results

Document: 

SP121-30

Date: 

November 1, 1990

Author(s):

George c. Hoff

Publication:

Symposium Papers

Volume:

121

Abstract:

Briefly reviews five joint industry-research programs pertaining to offshore concrete structures. These programs were sponsored by the oil and gas industry and related construction industries. These studies, conducted in both North America and Norway, included the use of high-strength, lightweight aggregate concretes in both material and structural evaluations. Selected characteristics of the high-strength, lightweight aggregate concretes used in these studies (such as ductility in reinforced concrete elements, punching shear behavior, and fatigue characteristics) are summarized. Future research needs are discussed.

DOI:

10.14359/3768


Document: 

SP121-32

Date: 

November 1, 1990

Author(s):

Min-Hong Zhang and Odd E. GjorvI

Publication:

Symposium Papers

Volume:

121

Abstract:

Pore structure, density, and strenght may vary within a wide range for different types of lightweight aggregate. Hence, not all types of lightweight aggregate are suitable for production of high-strength concrete. In the present work, the significance of various lightweight aggregates on the concrete strenght and density was studied. Twenty-eight-day compressive strengths up to 102 MPa, corresponding to a density of 1865 kg/m3, were obtained. The type of lightweight aggregate appears to be the primary factor controlling both the density and the strength. For high-strength lightweight concrete, it is difficult to predict the 28-day strengths from early strengths because of the influence of the aggregate.

DOI:

10.14359/3778


Document: 

SP121-37

Date: 

November 1, 1990

Author(s):

S. Helland

Publication:

Symposium Papers

Volume:

121

Abstract:

In Norway, almost every car is equipped with tires that have small steel studs to improve the traction between the tire and the road for driver control during the winter season. These studded tires have an enormous wearing effect on ordinary asphalt pavement. Roads with the heaviest traffic near the major towns need to be resurfaced at intervals of 1 to 2 years. To improve the abrasion resistance, application of high-strength concrete instead of asphalt has been started. The national Norwegian cement producer has performed a large-scale investigation to determine the relation between concrete composition and abrasion resistance. The results prove that a 100 MPa concrete might approach the same properties as massive granite. The paper describes a number of projects performed by an independent company, where this high-quality material has been utilized in practical construction.

DOI:

10.14359/3793


Document: 

SP121-38

Date: 

November 1, 1990

Author(s):

Kaare K. B. Dahl

Publication:

Symposium Papers

Volume:

121

Abstract:

Presents the results of an investigation undertaken at the Technical University of Denmark to determine the parameters that affect the ultimate load capacity of a concrete structure subjected to concentrated loads originating from reinforcement bars bent 90 deg. The following parameters have been found to have a decisive influence on the ultimate load capacity of the concrete bar: bar diameter, internal height of the specimen, side concrete cover, and concrete compressive strength. The results show that the relative load-carrying capacity of the concrete åc / fc decreases for increasing concrete compressive strength. However, the use of high-strength concrete (HSC) still results in an increase in the absolute load-carrying capacity of the concrete whencompared to normal strength concrete (NSC).

DOI:

10.14359/2870


Document: 

SP121-07

Date: 

November 1, 1990

Author(s):

H. Lambotte and Luc R. Taerwe

Publication:

Symposium Papers

Volume:

121

Abstract:

Six reinforced concrete beams and four slabs with different reinforcement ratios were tested to failure. The behavior of specimens manufactured with normal strength concrete (fc = 36 MPa) and high-strength concrete (fc = 83 MPa) was compared with respect to cracking and deflections. It was found that crack widths and crack spacings were fairly comparable for both concrete types in the region of stabilized cracking. Deflections decreased by using high-strength concrete due to the increased modulus of elasticity and cracking moment. However, for the beams, this gain diminishes at higher load levels.

DOI:

10.14359/2810


12345...>>

Results Per Page 




Edit Module Settings to define Page Content Reviewer