ACI Global Home Middle East Region Portal Western Europe Region Portal
Email Address is required Invalid Email Address
In today’s market, it is imperative to be knowledgeable and have an edge over the competition. ACI members have it…they are engaged, informed, and stay up to date by taking advantage of benefits that ACI membership provides them.
Read more about membership
Learn More
Become an ACI Member
Topics In Concrete
Home > Publications > International Concrete Abstracts Portal
The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.
Showing 1-5 of 26 Abstracts search results
Document:
SP12-02
Date:
January 1, 1965
Author(s):
E. F. P. Burnett and C. W. Yu
Publication:
Symposium Papers
Volume:
12
Abstract:
With discussion by Edward G. Nawy, H.A. Sawyer, M.Z. Cohn, and E.F.P. Burnett and C.W. Yu. An attempt is made to evaluate our present knowledge with regard to the analysis and design of reinforced concrete linear structural systems at ultimate load. The fundamental difference between the moment curvature concept and moment rotation concept is emphasized and discussed in detail. The authors have attempted to outline previous significant work, to underline a few basic principles, bearing in mind the difference between these two concepts, and to indicate the present extent of our knowledge of this subject with an appreciation of the assumptions and simplifications that are entailed. Readers are assumed to have some basic knowledge of some of the better known work on the subject, such as Sawyer’s or Baker’s work.
DOI:
10.14359/16713
SP12-03
Milik Tichy and Milos Vorlicek
With discussion by Theodore Zsutty, Jack R. Benjamin, C. Allen Cornell, and Milik Tichy and Milos Vorlicek. Because the ultimate strength and deformation ability of critical sections are random variables, the ultimate strength of a structure must likewise be a random variable. If the structure is subjected to load from one source and there is only one possible collapse mechanism, the determination of the ultimate strength ZU of the structure is simple. If the structure is subjected to load from one source but there are m possible collapse mechanisms, it becomes necessary to analyze the structure with the aid of equations of the type given herein. The ultimate strengthZUj, for j = 1, 2, . . . , m of the structure is determined by means of each of these equations assuming the occurrence of the j-th collapse mechanism. The probability pUj that the structure will change into the jth mechanism may be ascertained for a definite value of the load for each random variable ZUj But the actual probability of failure must be expressed with the aid of the so-called conditional probabilities since the individual mechanisms are not always statistically independent. If the structure is subjected to load from v sources and there are m possible collapse mechanisms an equation for the jth mechanism will graphically be represented by an interaction diagram. For a given population of structures, identical according to the design, there exists a number of possible combinations of load with a corresponding probability of failure pU. Geometrically speaking, they are points in the v - dimensional space. Their locus is the so called boundary of the safe domain IImin. When the deformation ability of a structure is considered, the system of equations forms the starting point. In this instance the random variable Zuj is a linear combination of ultimate moments MUi and the ultimate plastic rotation 0U of the section. The statistical solution is analogous with the previous one. It may be demonstrated that the variability in ultimate strength of a redundant structure is lower than that of a statically determinate one in all cases. Consequently, the application of the statistical method must result in savings of material in redundant structures.
10.14359/16714
SP12-01
Herbert A. Sawyer, Jr.
With discussion by Milik Tichy and Milos Vorlicek; and Herbert A. Sawyer, Jr. Because structural failure generally occurs in successively more severe stages at successively less probable loads, design should ideally account for all stages and be based on comprehensive analysis utilizing a comprehensive, non-linear, force-strain relationship. The criterion for optimum design, using the failure-stage-versus-load profile, is derived. For frames, a method of comprehensive analysis based on a multilinear moment-curvature relationship, using critical moments and "plasticity factors," is presented. Procedures and the relative economics of comprehensive design and its special cases, elastic, plastic, and ultimate strength designs, are compared. A bilinear design procedure for concrete frames, based on two failure stages, is presented.
10.14359/16712
SP12-18
Gerald M. Sturman, Surendra P. Shah, and George Winter
With discussion by Peter R. Barnard, George Pincus, Charles A. Rich, and Gerald Sturman, Surendra P. Shah, and George Winter. Inelastic behavior of concrete was studied by direct observations of internal microcracking. Thin slices were made from strained specimens and internal cracks were examined by X-ray and microscope techniques. Bond cracks at the interface between coarse aggregates and mortar, exist in concrete even before any load is applied. Analytical and experimental studies showed that tensile stresses are present at the mortar-aggregate interface because of volume changes of mortar and may be partly responsible for bond cracks in virgin concrete. These bond cracks begin to propagate noticeably at applied compression stresses of one-quarter to one-third of the ultimate strength. At this level the stress-strain curve begins to deviate from a straight line. At about 70% to 90% of ultimate strength cracks through mortar begin to increase noticeably and bridge between bond cracks to form a continuous crack pattern. Upon further load increase this condition eventually leads to a descending stress-strain curve and failure. Other investigators have noted that in that same load range, the volume of concrete begins to increase rather than decrease. An hypothesis explaining this volume expansion and propagation of bond cracks in terms of shear bond strength of the interface and microcracking has been presented. In order to investigate the influence of flexural strain gradients, microcracking and the stress-strain relation of eccentrically loaded specimens were compared with those of concentrically loaded specimens, It was found that a flexural strain gradient definitely retards microcracking, especially mortar cracking as compared to cracking at the same strain in axial compression. The stress-strain curve for eccentric compression, which was computed by an experimental-statistical approach was found to differ materially from that for concentric compression. The peak of the flexural curve was located at a strain about 50% larger and at a stress about 20% larger than the peak of the curve for concentric compression. Structural implications of these findings are briefly examined.
10.14359/16729
SP12-19
Peter R. Barnard
With discussion by Leonard G. Tulin and Kurt H. Gerstle, Ralph M. Richard and Stanley D. Hansen, and Peter R. Barnard. The purpose of this paper is to explain, in the light of recent research into the concrete stress-strain relationship in compression, the flexural behavior of statically indeterminate reinforced conrete beams when loaded to collapse. Based on the concept of concrete as a strain-softening material, it is shown that a length of a beam can continue to rotate when moment is falling off and that rupture will not occur unless the energy balance in the beam ceases to be satisfied. In a comparison between the inelastic behavior of structural steel and reinforced concrete beams, it is shownthat in the latter there is a distinct maximum load which such a beam can withstand; that hinging regions tend to contract rather than spread as in steel; that it is possible for some regions of a beam to be falling off in moment while the total load on the beam is increasing; and that moment redistribution occurs through falloff in moment at some sections as well as through inelastic action. Finally, the possible development of true collapse methods for the analysis or design of indeterminate reinforced concrete beams is discussed.
10.14359/16730
Results Per Page 5 10 15 20 25 50 100
Edit Module Settings to define Page Content Reviewer