In today’s market, it is imperative to be knowledgeable and have an edge over the competition. ACI members have it…they are engaged, informed, and stay up to date by taking advantage of benefits that ACI membership provides them.
Read more about membership
Learn More
Become an ACI Member
Founded in 1904 and headquartered in Farmington Hills, Michigan, USA, the American Concrete Institute is a leading authority and resource worldwide for the development, dissemination, and adoption of its consensus-based standards, technical resources, educational programs, and proven expertise for individuals and organizations involved in concrete design, construction, and materials, who share a commitment to pursuing the best use of concrete.
American Concrete Institute 38800 Country Club Dr. Farmington Hills, MI 48331-3439 USA
Phone: 1.248.848.3700 Fax: 1.248.848.3701 Staff Directory
Email Support
Feedback via Email Phone: 1.248.848.3800
Home > Publications > International Concrete Abstracts Portal
The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.
Title: Flexural Analysis of Prestressed Concrete Structures
Author(s): M. B. CAVALCANTI, B. HOROWITZ
Publication: IBRACON
Volume: 1
Issue: 4
Appears on pages(s): 331-364
Keywords: Prestress, Continuous, Secondary Effects.
Date: 12/30/2008
Abstract:In the computation of the strength capacity of prestressed concrete structures prestressing may be viewed as strength or load. “Model 1” considers prestressing strands as integral part of the cross section where prestressing operation induces imposed deformations corresponding to prestraining. Alternatively,“Model 2” considers prestressing as external loading, composed of a self-equilibrating system of forces on the anchorages and transversely on concrete. After transfer prestressing strands are considered as conventional reinforcement in computations except that the deformation axis is displaced to take into account pre-elongation. In spite of Model 1 being the most commonly used in designing of continuous beams and officially adopted by NBR 6118 it has the inconvenience of the mandatory consideration of additional secondary effects known as hyperstatic moments which must be taken into account in ultimate strength analysis. The computation of secondary effects is simple for continuous beams but becomes more involved in
Brazilian Institute of concrete, International Partner Access.
View Resource »