In today’s market, it is imperative to be knowledgeable and have an edge over the competition. ACI members have it…they are engaged, informed, and stay up to date by taking advantage of benefits that ACI membership provides them.
Read more about membership
Learn More
Become an ACI Member
Founded in 1904 and headquartered in Farmington Hills, Michigan, USA, the American Concrete Institute is a leading authority and resource worldwide for the development, dissemination, and adoption of its consensus-based standards, technical resources, educational programs, and proven expertise for individuals and organizations involved in concrete design, construction, and materials, who share a commitment to pursuing the best use of concrete.
American Concrete Institute 38800 Country Club Dr. Farmington Hills, MI 48331-3439 USA
Phone: 1.248.848.3700 Fax: 1.248.848.3701 Staff Directory
Email Support
Feedback via Email Phone: 1.248.848.3800
Home > Publications > International Concrete Abstracts Portal
The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.
Title: Effect of SCC Mixture Proportioning on Transfer and Development Length of Prestressing Strand
Author(s): R. Burgueño and M. Haq
Publication: Special Publication
Volume: 247
Issue:
Appears on pages(s): 105-116
Keywords: bond; development length; flexural behavior; prestressed concrete; pullout; self-consolidating concrete (SCC); shear behavior; structural testing; transfer length
Date: 9/1/2007
Abstract:The mix design deviations required to achieve self-consolidating concrete (SCC) have raised concerns on the effect that this may have on the bond performance of reinforcement. The paper summarizes an investigation on the effect of SCC mix proportioning on the bond behavior and bond-related parameters of transfer and development length of 13mm (0.5 in.) diameter prestressing strands. Three SCC mix designs that bound the common approaches to achieve SCC and a reference normally consolidated concrete (NCC) mix were used. Direct bond strength was assessed by simple strand pull-out tests. Using laboratory-scale T-beams, transfer length was evaluated by concrete surface strains and draw-in measurements, while development lengths were estimated through flexural tests. Results indicated the bond performance of strand in SCC to be lower than for NCC. Transfer and development lengths for SCC were longer than for NCC; yet, on average, these lengths still met the ACI code recommendations. Bond performance for the different SCC mixes was distinct, consistent and bounded by the extreme cases considered. Given the variability and uncertainties in the experimental methods and code equations, results from this study indicate that bond performance on SCC, as it pertains to anchorage lengths, is adequate.
Click here to become an online Journal subscriber