ACI Global Home Middle East Region Portal Western Europe Region Portal
Email Address is required Invalid Email Address
In today’s market, it is imperative to be knowledgeable and have an edge over the competition. ACI members have it…they are engaged, informed, and stay up to date by taking advantage of benefits that ACI membership provides them.
Read more about membership
Learn More
Become an ACI Member
Topics In Concrete
Home > Publications > International Concrete Abstracts Portal
Showing 1-5 of 1665 Abstracts search results
Document:
CI4704Ehsani
Date:
April 1, 2025
Author(s):
Mo Ehsani
Publication:
Concrete International
Volume:
47
Issue:
4
Abstract:
This article introduces the latest fiber-reinforced polymer panel system developed by the author—SPiRe®+. These panels can serve as formwork, corrosion resistant reinforcement, and waterproofing. With their flat and smooth exterior face and protruding T-profiles on the interior face, the panels act as reinforcing elements for strengthening beams, slabs, and walls.
CI4704ConcreteQA
While completing concrete repairs, is it necessary to remove sound concrete if a nearby reinforcing bar exhibits rust? Can terms like corrosion or rust be used interchangeably? This month’s Q&A provides answers to these questions as well as a discussion on various factors influencing the extent of a repair of corrosion-related damage in concrete structures.
SP365_02
March 1, 2025
Luca Facconi, Ali Amin, Fausto Minelli and Giovanni Plizzari
Symposium Papers
365
The limited availability of research studies related to the behavior of Steel Fiber Reinforced Concrete (SFRC) members subjected to torsion has hindered the development of clear and reliable design guidelines. Recent efforts by various researchers have been devoted to the development of analytical models for predicting the torsional response of SFRC members, supported by experimental results which have highlighted the efficiency of steel fibers in improving the torsional resistance and stiffness. For beams subjected to moderate or low levels of torsion, steel fibers, even at moderate dosages, have demonstrated the potential to replace minimum conventional torsion reinforcement, thus providing significant advantages for practical applications. This paper presents a discussion of the recent developments in research related to testing SFRC members under pure torsion. A comprehensive database of experimental test data is collated to provide a state-of-the-art in this respect. Additionally, the manuscript delves into analytical prediction models for the torsional capacity by some European code-oriented models, recently introduced by the Eurocode 2 as well as by the Authors of this paper. The results of model predictions are compared with available experimental data to assess the effectiveness and reliability of the models.
DOI:
10.14359/51746681
SP365_05
David Z. Yankelevsky, Yuri S. Karinski, and Vladimir R. Feldgun
Punching shear failure of RC flat slab connections cause loss of slab’s supports. The detached slab is falling and impacting the slab below. That problem requires thorough investigation and appropriate design guidelines. This paper presents research results on various aspects of this impact scenario. The analysis is based on an advanced numerical model that has been formulated, and the impact analyses follow the damage evolution in the concrete and reinforcement until complete connections failure of the impacted slab is developed, and a progressive collapse scenario starts. The effects of slab geometry and material properties were examined, and the contribution of special shear reinforcement and integrity rebars were investigated. The potential contribution of added drop panels to enhance slab resistance were examined. The slabs impact effect on the supporting columns has been investigated as well. The suitability of current static loading design-criteria to provide safe design against dynamic/impact punching shear is assessed. It shows that the current static-loading based design standards cannot ensure resilience of flat slab connections to impact loading and therefore cannot prevent a progressive collapse scenario. Analyses results are compared with inspected failure details of a collapsed RC flat slabs parking garage building, and excellent agreement is obtained.
10.14359/51746685
SP365_06
Austin Martins-Robalino, Alessandro Paglia, and Dan Palermo
Experimental testing of a reinforced concrete shear wall subjected to combined axial load and reverse cyclic lateral displacements was conducted to investigate rocking and sliding observed in a companion wall tested without axial loading, and to assess the effect of axial load on residual drifts. The application of 10% axial load resulted in greater lateral load capacity and stiffness, as well as increased ductility. The presence of axial load contributed to satisfying lower residual drift limits at higher transient drifts. Further analysis was conducted to disaggregate the total lateral displacement into sliding, rocking, shear, and flexure mechanisms. Comparison to the companion wall demonstrated that the present wall had significantly greater contribution from flexural effects with the axial load delaying the influence of rocking until crushing of the concrete. A complementary numerical study of the wall with axial load was conducted, and a modelling methodology was presented to better capture the fracture phenomena of steel reinforcement. This methodology accounted for local fracture of reinforcement and a reduction of reinforcement area due to the presence of strain gauges. The simulation of failure and the predicted lateral displacement capacity were significantly improved compared to a model that did not consider these phenomena.
10.14359/51746686
Results Per Page 5 10 15 20 25 50 100
The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.
Edit Module Settings to define Page Content Reviewer