International Concrete Abstracts Portal

Showing 1-5 of 508 Abstracts search results

Document: 

24-374

Date: 

May 8, 2025

Author(s):

Norsuzailina Mohamed Sutan, Faisal Amsyar, Abdul Razak Abdul Karim, Norazzlina M.Sa’don, Yoeng Sebastian Shun Hui, and Chin Cerries Yee Jie

Publication:

Materials Journal

Abstract:

Engineered cementitious composites (ECC) represent a significant innovation in construction materials due to their exceptional flexibility, tensile strength, and durability, surpassing traditional concrete. This review systematically examines the composition, mechanical behaviour, and real-world applications of ECC, with a focus on how fiber reinforcement, mineral additives, and micromechanical design improve its structural performance. The present study reports on the effects of various factors, including different types of mineral admixtures, aggregate sizes, fiber hybridization, and specimen dimensions. Key topics include ECC’s strain-hardening properties, its sustainability, and its capacity to resist crack development, making it ideal for high-performance infrastructure projects. Additionally, the review discusses recent advancements in ECC technology, such as hybrid fibre reinforcement and the material’s growing use in seismic structures. The paper also addresses the primary obstacles, including high initial costs and the absence of standardized specifications, while proposing future research paths aimed at optimizing ECC’s efficiency and economic viability.

DOI:

10.14359/51746811


Document: 

23-322

Date: 

March 1, 2025

Author(s):

Yail J. Kim, Jun Wang, Woo-Tai Jung, Jae-Yoon Kang, and Jong-Sup Park

Publication:

Structural Journal

Volume:

122

Issue:

2

Abstract:

This paper presents the implications of creep-fatigue interactions for the long-term behavior of bulb-tee bridge girders prestressed with either steel strands or carbon fiber-reinforced polymer (CFRP) tendons. A large amount of weigh-in-motion data incorporating 194 million vehicles are classified to realistically represent live loads. Computational simulations are conducted as per the engagement of discrete autonomous entities in line with time- dependent material models. In general, the properties of CFRP tendons vary insignificantly over 100 years; however, the stress range of CFRP responds to fatigue cycles. Regarding prestress losses, the conventional method with initial material properties renders conservative predictions relative to refined approaches considering time-varying properties. The creep and fatigue effects alter the post-yield and post-cracking responses of steel- and CFRP-prestressed girders, respectively. From deformational capability standpoints, steel-prestressed girders are more vulnerable to fatigue in comparison with CFRP-prestressed ones. It is recommended that the fatigue truck and the compression limit of published specifications be updated to accommodate the ramifications of contemporary traffic loadings. Although the operational reliability of both girder types is satisfactory, CFRP-prestressed girders outperform their steel counterparts in terms of fatigue safety. Technical findings are integrated to propose design recommendations.

DOI:

10.14359/51743304


Document: 

24-056

Date: 

March 1, 2025

Author(s):

Camilo Vega, Abdeldjelil Belarbi, and Antonio Nanni

Publication:

Structural Journal

Volume:

122

Issue:

2

Abstract:

Design codes base the behavior of the shear-friction interface on two models: the basic shear friction model and the cohesion plus friction model. These models have been developed using steel as the reference reinforcing material and they have extended to design provisions when using glass fiber-reinforced polymer (GFRP) materials. However, when using GFRP reinforcement, where yielding does not happen, a different ultimate limit state needs to be introduced. Accordingly, additional data and analysis are required to validate and improve the proposed models and to verify what implications they have on design when specifying GFRP materials. In this research, a study was conducted based on previous experimental data on the contribution of GFRP bars to the mechanism of shear transfer by using the pushoff test. Through a multiple linear-regression analysis, a mathematical model introducing new parameters that accurately capture the behavior of this material with respect to shear-transfer phenomena in concrete structures is presented in this paper. The findings of this study provide new insights into the behavior of the shear-friction mechanism with GFRP reinforcement, suggesting potential updates for current design codes and guide specifications.

DOI:

10.14359/51744398


Document: 

22-377

Date: 

January 2, 2025

Author(s):

Tarutal Ghosh Mondal, Nikkolas Edgmond, Lesley H. Sneed, and Genda Chen

Publication:

Structural Journal

Volume:

122

Issue:

1

Abstract:

Current design provisions pertaining to the shear transfer strength of concrete-to-concrete interfaces, including those of the AASHTO LRFD design specifications and ACI 318 Code, are based on limited physical test data from studies conducted decades ago. Since the development of these design provisions, many studies have been conducted to investigate additional parameters. In addition, modern concrete technology has expanded the range of materials available and often includes the use of high-strength concrete and high-strength reinforcing steel. Recent studies examined the applicability of current shear-friction design approaches to interfaces that comprise high-strength concrete and/or high-strength steel and identified a need for revision to the existing provisions. To this end, this study leveraged a comprehensive database of test results collected from the literature to propose a deep-learningbased predictive model for normalweight concrete-to-concrete interfacial shear strength. Additionally, a new computation scheme is proposed to estimate the nominal shear strength with a higher prediction accuracy than the existing AASHTO LRFD and ACI 318 design provisions.

DOI:

10.14359/51743291


Document: 

22-398

Date: 

September 1, 2024

Author(s):

Sangyoung Han, Jarrod Zaborac, Jongkwon Choi, Anca C. Ferche, and Oguzhan Bayrak

Publication:

Structural Journal

Volume:

121

Issue:

5

Abstract:

The results of an experimental program conducted to evaluate the performance of shear-critical post-tensioned I-girders with grouted and ungrouted ducts are presented. The experimental program involved the design, construction, and testing to failure of six fullscale specimens with different duct layouts (straight, parabolic, or hybrid) and using both grouted or ungrouted ducts. All tests resulted in similar failure modes, such as localized web crushing in the vicinity of the duct, regardless of the duct condition or layout. Furthermore, the normalized shear stresses at ultimate were similar for the grouted and ungrouted specimens. The current shear design provisions in the AASHTO LRFD Bridge Design Specifications (AASHTO LRFD) were reviewed, and updated shear-strength reduction factors to account for the presence of the duct in the web and its condition (that is, grouted or ungrouted) were proposed. The data generated from these tests served as the foundation for updated shear-strength reduction factors proposed for implementation in AASHTO LRFD.

DOI:

10.14359/51740847


12345...>>

Results Per Page 





ABOUT THE INTERNATIONAL CONCRETE ABSTRACTS PORTAL

  • The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

Edit Module Settings to define Page Content Reviewer