ACI Global Home Middle East Region Portal Western Europe Region Portal
Email Address is required Invalid Email Address
In today’s market, it is imperative to be knowledgeable and have an edge over the competition. ACI members have it…they are engaged, informed, and stay up to date by taking advantage of benefits that ACI membership provides them.
Read more about membership
Learn More
Become an ACI Member
Topics In Concrete
Home > Publications > International Concrete Abstracts Portal
Showing 1-5 of 1176 Abstracts search results
Document:
23-117
Date:
May 1, 2025
Author(s):
Mustafa M. Raheem and Hayder A. Rasheed
Publication:
Structural Journal
Volume:
122
Issue:
3
Abstract:
Extensive experimental verification has shown that the use of fiber-reinforced polymer (FRP) anchors in combination with externally bonded FRP composites increases the flexural capacity of existing reinforced concrete (RC) structures. Thus, a rational prediction model is introduced in this study so that fiber splay anchors may be accurately designed for practical strengthening applications. Simplified structural mechanics principles are used to build this model for capacity prediction of a group of fiber splay anchors used for FRP flexural strengthening. Three existing test series using fiber splay anchors to secure FRP-strengthened T-beams, block-scale, and one-way slabs were used to calibrate and verify the accuracy and applicability of the present model. The present model is shown to yield very accurate predictions when compared to the results of the block-scale specimen and eight different one-way slabs. The proposed model is also compared with the predictions of a design equation adapted from the case of channel shear connectors in composite concrete-steel construction. Results show a very promising correlation.
DOI:
10.14359/51745639
23-107
March 25, 2025
Graeme J. Milligan, Maria Anna Polak, and Cory Zurell
10.14359/51746718
24-358
Benjamin Worsfold, Dara Karać, and Jack Moehle
Steel columns are commonly attached to concrete foundations with groups of cast-in-place headed anchors. Recent physical tests and simulations have shown that the strength of these connections can be limited by concrete breakout failure. Four full-scale physical specimens of axially loaded columns attached to a foundation slab were tested, varying the shear reinforcement configuration in the slab. All specimens were governed by concrete breakout failure. The tests suggest that adequately placed distributed shear reinforcement can increase connection strength and displacement capacity. Steep cone failures were observed to limit the beneficial effect of shear reinforcement. Calibrated finite element models were used to investigate critical parameters such as the extent of the shear-reinforced region and bar spacing. A design approach is proposed to calculate connection strength by adding the strength of the concrete and the distributed shear reinforcement. Design detailing is discussed.
10.14359/51746720
22-392
March 1, 2025
Jong-Hoon Kwon, Bum-Sik Lee, Sung-Hyun Kim, and Hong-Gun Park
2
The present study investigated the contribution of slabs to the lateral load-carrying capacity of shear walls coupled with slabs. Cyclic lateral load tests were conducted on five two-story wall specimens at half scale. The test parameters included the thickness of the slab, the wall opening length, the use of punching shear reinforcement, and the use of parallel walls. The test results showed that, due to the slab effect, the strengths of the coupled wall specimens were 38 to 88% greater than the strength of walls without the slab effect. Furthermore, the initial stiffness of the specimens was significantly increased by the slab effect. During early loading, local failure of the slabs occurred at the wall-slab connection. However, the coupled walls exhibited ductile behavior up to a 2% drift ratio, without significant degradation of strength. Nonlinear finite element analysis was performed on the test specimens. Based on the results, the initial stiffness and effective stiffness of the walls and coupling slabs were evaluated for the seismic design of coupled walls.
10.14359/51743301
23-095
Worldwide punching shear design provisions for interior slab-column connections subjected to concentric shear differ greatly in how to account for column rectangularity (aspect ratio). In some, a reduced nominal shear capacity along the critical perimeter is assumed, whereas an effective or reduced critical perimeter is assumed in others. In this paper, three alternative methods to estimate the concentric punching shear capacity of interior rectangular slab-column connections without shear reinforcement, which implicitly account for the influence of column rectangularity and the ratio of the minimum column dimension to the effective slab depth, are presented. The accuracy of the proposed methods is studied through comparisons to 76 nonlinear finite element models and 86 experiments. The predicted punching capacities from the proposed methods and ACI 318-19 are also compared.
10.14359/51739194
Results Per Page 5 10 15 20 25 50 100
The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.
Edit Module Settings to define Page Content Reviewer