ACI Global Home Middle East Region Portal Western Europe Region Portal
Email Address is required Invalid Email Address
In today’s market, it is imperative to be knowledgeable and have an edge over the competition. ACI members have it…they are engaged, informed, and stay up to date by taking advantage of benefits that ACI membership provides them.
Read more about membership
Learn More
Become an ACI Member
Topics In Concrete
Home > Publications > International Concrete Abstracts Portal
The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.
Showing 1-5 of 1181 Abstracts search results
Document:
25-009
Date:
September 11, 2025
Author(s):
Yongjae Yu; Dagoberto Garza; Elias I. Saqan, and Oguzhan Bayrak
Publication:
Structural Journal
Abstract:
Several studies have revealed that slabs with cast-in-place over precast, prestressed panels (CIP-PCP) behave differently from traditional concrete slabs because of the panel joints between the PCP components. While high-strength reinforcing bars can improve load capacity or reduce reinforcing bar quantity in traditional slabs, limited research has focused on their application in CIP-PCP slabs. This study addressed this gap by conducting four-point bending tests on CIP-PCP slabs with normal- and high-strength reinforcing bars. Two configurations of high-strength steel were used: one with the same reinforcing bar layout as normal-strength reinforcing bars and another with increased reinforcing bar spacing to reduce the reinforcing bar quantity. Additionally, slab specimens were designed to replicate real-world bridge deck conditions, including longitudinal and transverse joints, for detailed analysis. The results indicated that reducing reinforcing bar quantity by adjusting reinforcing bar spacing based on the specified yield strength ratio between normal- and high-strength steels maintained a comparable load capacity, with crack widths magnitude similar to those in normal-strength steel layout in the service state.
DOI:
10.14359/51749174
23-114
September 10, 2025
Mosleh Tohidi and Ali Bahadori-Jahromi
Although the issue of progressive collapse has been significantly studied within the broader field of structural engineering, the literature on the analysis and design of connections in precast concrete cross-wall buildings is rather limited. This study aims to investigate the progressive collapse behaviour of a typical precast floor-to-floor system, considering the pull-out failure mode of the deformed bar into grouted keyways of slabs at the joints. To do so, the pull-out behaviour of deformed bars in grouted keyways of the connections was first experimentally studied. Subsequently, by integrating the pull-out force-displacement data with findings from full-scale floor-to-floor experiments, an approximate analytical approach was formulated and validated to estimate the resistance to progressive collapse. The findings reveal that the floor-to-floor system, when subjected to the pull-out failure mode following the removal of a wall support, demonstrates a secondary peak strength and considerable ductility in contrast to the bar fracture failure mode.
10.14359/51749161
24-030
July 1, 2025
Kwanwoo Yi and Thomas H.-K. Kang
Volume:
122
Issue:
4
This study used finite element analysis to examine how tendon configuration affects the temperature behavior of post-tensioned concrete structures during fire exposure. The thermal behavior of various tendon configurations was modeled, showing good agreement with experimental data. Parametric studies found that unbonded single-strand tendons (S) and prestressing (pretensioned) strands (R) had lower thermal resistance than bonded post-tensioned tendons (B), unbonded post-tensioned tendons (U), and grouted extruded-strand tendons (G). The S and R specimens stayed at or below the critical temperature for one-way slabs, validating current safety codes. The B, U, and G specimens remained well below critical temperatures, indicating that a thinner concrete cover might suffice. These findings highlight the need to consider tendon configuration in structural fire-resistance evaluation and incorporate heat resistance assessment to ensure the safety and efficiency of prestressed concrete structures during fires.
10.14359/51745642
23-264
M.-Y. Cheng, P.-J. Chen, C.-H. Chen, B. L. Worsfold, G. J. Parra-Montesinos, and J. P. Moehle
Recent tests showed that anchorage failure could be the primary mechanism that limits the strength and deformation capacity of column-footing connections. An experimental program consisting of the reversed cyclic load testing of 16 approximately full-scale column-footing subassemblages was thus conducted to investigate the effect of various reinforcement details on connection strength, drift capacity, and failure mode. The main parameters evaluated were type of anchorage for the column longitudinal bars (either hooks or heads), extension of column transverse reinforcement into the footing, and longitudinal and transverse reinforcement ratios in the footing. Test results indicate that even when column longitudinal reinforcement extends into the joint with a development length in accordance with ACI 318-19, a cone-shaped concrete breakout failure may occur, limiting connection strength and deformation capacity. The use of transverse reinforcement in the connection over a region extending up to one footing effective depth away from each column face proved effective in preventing a concrete breakout failure. However, for the specimens with column headed bars, extensive concrete crushing adjacent to the bearing side of the heads and spalling beyond the back side of the heads led to significant bar slip and “pinching” in the load versus drift hysteresis loops at drift ratios greater than 3%. The use of U-shaped bars in the joint between the column and the footing or slab, as recommended in ACI 352R-02, led to improved behavior in terms of strength and deformation capacity, although it did not prevent the propagation of a cone-shaped failure surface outside the joint region. Based on the test results, the basic concrete breakout strength, Nb, corresponding to a 50% fractile, in combination with a cracking factor ψc,N = 1.25, is recommended when using Section 17.6.2. of ACI 318-19 for calculation of concrete breakout strength in connections similar to those tested in this investigation.
10.14359/51746671
24-132
June 18, 2025
Deuckhang Lee, Min-Kook Park, Yuguang Yang, and Kang Su Kim
No practically viable method exists yet to provide minimum shear reinforcements into pretensioned precast hollow-core slab (PHCS) units produced through the automated extrusion method. Subsequently, web-shear strength of PHCS units with untopped depth greater than 315 mm (12.5 in) should be reduced by half according to the current ACI 318 shear design provision. Meanwhile, continuous precast floor construction has been commonly adopted in current practices by utilizing cast-in-place (CIP) topping and/or core-filling concrete. However, shear test results on continuous composite PHCS members subjected to combined shear and negative bending moment are very limited in the literature. To this end, this study conducts shear tests of thick composite PHCS members with untopped depths greater than 315 mm (12.5 in) and various span-depth ratios, subjected to negative bending moments, where noncomposite and composite PHCS units subjected to shear combined with positive bending were also tested for comparison purposes. Test results showed that the flexure-shear strength can dominate the failure mode of continuous PHCS members rather than the web-shear failure, depending on the presence of CIP topping concrete and shear span-depth ratio. In addition, it was also confirmed that the shear strength of composite PHCS members is marginally improved by using the core-filling method under negative bending moment at continuous support, and thus its shear contribution seems not fully code-compliant and satisfactory to that estimated by using ACI 318 shear design equations.
10.14359/51748928
Results Per Page 5 10 15 20 25 50 100
Edit Module Settings to define Page Content Reviewer