ACI Global Home Middle East Region Portal Western Europe Region Portal
Email Address is required Invalid Email Address
In today’s market, it is imperative to be knowledgeable and have an edge over the competition. ACI members have it…they are engaged, informed, and stay up to date by taking advantage of benefits that ACI membership provides them.
Read more about membership
Learn More
Become an ACI Member
Topics In Concrete
Home > Publications > International Concrete Abstracts Portal
The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.
Showing 1-5 of 2726 Abstracts search results
Document:
24-423
Date:
January 1, 2026
Author(s):
Ahmed Iraqy, Basil Ibrahim, Mohamed Eladawy, and Brahim Benmokrane
Publication:
Structural Journal
Volume:
123
Issue:
1
Abstract:
Corrosion—one of the major threats to the integrity of concrete structures—can consequently affect structure serviceability and ultimate limit state, possibly resulting in failure. Glass fiber-reinforced polymer (GFRP) can be used as an innovative alternative for conventional steel reinforcement in concrete structures, effectively addressing corrosion issues. In addition to its corrosion resistance and high strength-to-weight ratio, GFRP is commonly selected for nonprestressed bars and stirrups due to its cost advantage over other fiber-reinforced polymer (FRP) materials. The study endeavored to provide a comprehensive overview of the shear resistance in GFRP-reinforced concrete (RC) beams with short shear spans. The manuscript aims to synthesize and analyze shear test data based on published studies on GFRP-RC beams with a short shear span (a/d = 1.5 to 2.5). A comprehensive literature review was conducted to compile a database comprising 64 short GFRP-RC beams to evaluate the efficiency of using the strut-and-tie model (STM) for predicting the shear resistance of GFRP-RC beams. The findings reveal that ACI 318-19 STM yielded the most accurate predictions of the shear resistance of GFRP-RC beams with a/d of 1.5 to 2.5, because the current ACI CODE-440.11-22 and ACI 440.1R-15 design codes and guidelines do not include shear equations using the STM for predicting the shear resistance of GFRP-RC beams. Based on the findings of this study, the results could contribute to establishing shear equations in the upcoming revision of the ACI CODE-440.11-22 and ACI 440.1R-15 design codes and guidelines, specifically tailored for designing short GFRP-RC beams using the STM. The study also provides sufficient data to apply the STM in the design of GFRP-RC beams.
DOI:
10.14359/51749102
24-449
Yail J. Kim and Thi Ha
This paper presents the effectiveness of various reinforcing schemes in the end zones of prestressed concrete bulb-tee girders. The default girder, provided by a local transportation agency, includes C-bars and spirals intended to control cracking, and is analyzed using three-dimensional finite element analysis. The formulated models are used to evaluate the breadth of end zones, strain responses, cracking patterns, damage amounts, and splitting forces, depending upon the configuration of the end-zone reinforcement. The number of C-bars is not influential in developing strand stress along the girder. The maximum principal stresses exceed the conventional limit within h/4 of the girder end, where h is the girder depth; however, the 3h/4 limit adequately encompasses the stress profiles, particularly in the web of the girder. The maximum tensile strain in the concrete varies with the elevation of the girder and the inclined strands cause local compression in the C-bars, while spiral strains are independent of the number of bars. By positioning the C-bars, the vertical strain of the concrete decreases by more than 15.9%, which can minimize crack formation. Whereas the short-term crack width of the girder may not be an immediate concern, its long-term width is found to surpass the established limit of 0.18 mm (0.007 in.). In this regard, multiple C-bars should be placed to address concerns about undesirable cracking. The splitting cracks in the girder, resulting from the strand angles and eccentricities, can be properly predicted by published specifications within the range of 0.2h to 0.7h, beyond which remarkable discrepancies are observed in comparison with a refined approach. From a practical perspective, two to three No. 6 or 7 C-bars spaced 150 mm (6 in.) apart are recommended in the end zones alongside welded wire fabric.
10.14359/51749103
24-435
Jorge L. Bazan and Victor I. Fernandez-Davila
This study investigates the ultimate flexural strength (UFS) of reinforced concrete beams strengthened with carbon fiber-reinforced polymer (CFRP) (RCB-SCFRP), focusing on the identification and quantification of flexural overstrength concerning the nominal flexural strength (NFS) as defined by ACI 440.2R. A total of 106 full-scale specimens tested were carefully selected from previous research, varying in concrete strength, reinforcement configurations, and CFRP materials from multiple manufacturers. Results show that ACI 440.2R provisions accurately and conservatively estimate the flexural capacity of CFRP-strengthened beams. Including CFRP transverse reinforcement (TR) resulted in a slight increase in UFS. The type of strengthening, whether preloaded and repaired or strengthened, had little effect on the UFS/NFS ratio. Steel reinforcement ratio (SRR) significantly influenced overstrength, with higher UFS/NFS ratios observed between 0.70% and 1.00% SRR. CFRP axial rigidity (Kf ρf) notably affected overstrength, with optimal performance between 0.10 and 0.50 GPa·mm. Deflection ductility was mainly affected by the rigidity of CFRP, with a 13% increase noted due to CFRP TR. A log-normal model was developed to estimate UFS for RCB-SCFRP beams based on experimental data and ACI 440.2R guidelines.
10.14359/51749171
24-048
Mohamed Abouyoussef, Ahmed Akl, and Mohamed Ezzeldin
Previous research studies have been conducted to study the seismic response of low-aspect-ratio reinforced concrete (RC) shear walls when designed using normal-strength reinforcement (NSR) versus high-strength reinforcement (HSR). Such studies demonstrated that the use of HSR has the potential to address several constructability issues in nuclear construction practice by reducing the required steel areas and subsequently reinforcing bar congestion. However, the response of nuclear RC shear walls (that is, aspect ratios of less than 1) with both HSR and axial loads has not been yet evaluated under ground motion sequences. As such, most nuclear design standards restrict the use of HSR in nuclear RC shear wall systems. Such design standards do not also consider the influence of axial loads when the shear-strength capacity of such walls is calculated. To address this gap, the current study investigates the influence of axial load on the performance of nuclear RC shear walls with HSR when subjected to ground motion sequences using hybrid simulation testing and modeling assessment techniques. In this respect, two RC shear walls (that is, W1-HSR and W2-HSR-AL) with an aspect ratio of 0.83 are investigated. Wall W2-HSR-AL had an axial load of 3.5% of its axial compressive strength, whereas Wall W1-HSR had no axial load. The test walls were subjected to a wide range of ground motion records, from operational basis earthquake (OBE) to beyond design basis earthquake (BDBE) levels. The experimental results of the walls are discussed in terms of their damage sequences, cracking patterns, ductility capacities, effective periods, and reinforcing bar strains. The test results were then used to develop and validate a numerical OpenSees model that simulates the seismic response of nuclear RC shear walls with different axial load levels. Finally, the experimental and numerical results were compared to the current ASCE 41 backbone model for RC shear walls. The experimental results demonstrate that Walls W1-HSR and W2-HSR-AL showed similar crack patterns and subsequent shear-flexure failures; however, the former had wider cracks relative to the latter during the different ground motion records. In addition, the axial load reduced the displacement ductility of Wall W2-HSR-AL by 18% compared to Wall W1-HSR. Moreover, the ASCE 41 backbone model was not able to adequately capture the seismic response of the two test walls. The current study enlarges the experimental and numerical/analytical database pertaining to the seismic performance of low-aspect-ratio RC shear walls with HSR to facilitate their adoption in nuclear construction practice.
10.14359/51749164
24-155
Srinivas Mogili and Shyh-Jiann Hwang
Brittle punching failures in flat plates are precluded by ensuring adequate shear strength. Typically, this is achieved by adding shear reinforcement in the design. This paper presents an experimental and analytical study of flat plates to investigate load-resisting mechanisms associated with stirrup addition. The experimental program includes four isolated flat plates with parametric variations tested under monotonic punching loads. In terms of normalized shear strength, improvements of 22% and 29% were observed in flat plates with different layouts of stirrups, respectively, when compared with the reference specimen without stirrups. The role of longitudinal and shear reinforcements in punching resistance of flat plates was assessed through strain observations. Based on test findings, a physics-based analytical procedure for punching capacity estimation is proposed and verified using a database of 72 isolated flat-plate specimens. The proposed method provided reasonably accurate capacity estimates with an overall mean test-to-estimated capacity ratio of 1.06 and a low coefficient of variation (COV) of 13%. These estimates are also compared with capacity predictions using ACI 318-19 guidelines, which resulted in an overall mean capacity ratio of 1.58 with a COV of 22%. Based on experimental and analytical results, modifications to ACI 318-19 two-way shear provisions are suggested by incorporating the key parameters in shear strength estimations, which improved the prediction accuracy to a mean of 1.25 with a COV of 13%.
10.14359/51748929
Results Per Page 5 10 15 20 25 50 100
Edit Module Settings to define Page Content Reviewer