ACI Global Home Middle East Region Portal Western Europe Region Portal
Email Address is required Invalid Email Address
In today’s market, it is imperative to be knowledgeable and have an edge over the competition. ACI members have it…they are engaged, informed, and stay up to date by taking advantage of benefits that ACI membership provides them.
Read more about membership
Learn More
Become an ACI Member
Topics In Concrete
Home > Publications > International Concrete Abstracts Portal
The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.
Showing 1-5 of 63 Abstracts search results
Document:
SP153-24
Date:
June 1, 1995
Author(s):
A. Hassaballah and T. H. Wenzel
Publication:
Symposium Papers
Volume:
153
Abstract:
The water-to-cementitious materials ratio (W/CM) is recognized as an important variable in understanding and controlling the quality of concretes containing pozzolan powder additives, such as fly ash. This paper presents part of a study to determine a correct way to evaluate the contribution of fly ash to concrete strength as is usually indicated by the W/CM ratio. A rational mathematical model of the form W/CM = W/(C + K * FA) is presented, in which W, C and FA are water, cement, and fly ash contents per m 3 of concrete, respectively. K is a pozzolan efficiency factor based on comparing the compressive strength of two concretes having the same workability and the same amount of cement. An experimental program was conducted to demonstrate the use of the proposed W/CM ratio model and corresponding K values. The variables studied were class and addition level of fly ash and slump, strength, and age of concrete. Results show that the model describes and considers the influence of fly ash on the rheological properties of fresh concrete and on the strength of hardened concrete. The model is also suitable for use as an equivalent to Abram's law to account for modern day powder additives.
DOI:
10.14359/1081
SP153-25
S. L. Sarkar, A. Kumar, D. K. Das, and G. Banerjee
The individual binding capacity of fly ash in lime bearing systems and gypsum on its own is well established. This study was aimed at utilizing gypsum as phosphogypsum and industrial lime in conjunction with high volume fly ash to develop a cost-effective cementitious binder product by advantageously utilizing the individual binding capacity of the materials. The materials were first fully characterized chemically and mineralogically to evaluate their potential as building material components. Different mixture proportions were tested. Compressive strength data of different mixtures at one day, 3, 7, 14, 21, and 28 days are presented. These are correlated with the hydration properties at corresponding ages studied by means of XRD, SEM/EDXA, and DTA. The discussion relates to the roles of the individual components in the development of strength properties. Products with an interlocking microstructure and compressive strengths of over 12 MPa after 28 days of hydration are described. The cost effectiveness and possible applications of cementitious products that can be developed with such a system are also described.
10.14359/1082
SP153-26
P. K. Rohatgi, P. Huang, R. Guo, B. N. Keshavaram, and D. Golden
A new variety of applications are being found for fly ash. It is increasingly important to determine the structural properties of fly ash particles, especially for increasing use in composites, such as polymer matrix and cast metal matrix composites. In this paper, selected properties of precipitator fly ash and cenosphere fly ash were directly measured; other properties were indirectly estimated from the experimental measurements on the properties of composites containing fly ash. The properties studied included sphericity of fly ash particles, wall thickness, the ratio of wall thickness to diameter, and modulus. The data generated on properties of fly ash have been compared with other filler or reinforcement materials, such as glass microspheres, Al 2O 3 , SiO 2, and SiC particles. The results show that the deviation of cenospheres from sphericity is virtually independent of diameter. The ratio of wall thickness to diameter of cenospheres is about 0.1 and tends to decrease with increasing particle diameter. The calculated values of effective modulus of fly ash from the property measurements on metal matrix-fly ash composites are in the range of 140 to 310 GPa, which are of the same order of magnitude as of general ceramics and glasses. The morphology of precipitator and cenosphere fly ash particles studied using scanning electron microscope is discussed. The implications of the morphology and properties of fly ash on its utilization, especially in micro and macro composites, including cements, are also discussed.
10.14359/1083
SP153-27
P. C. Taylor, P. E. Streicher, G. Goch, and L. Fliss
A test program was conducted to establish criteria for a performance- based specification of concrete quality, as a opposed to a prescriptive specification, for a major project in South Africa. Concretes containing different combinations of portland cement, fly ash, ground granulated blast furnace slag, and silica fume were prepared over a range of water/binder (W/CM) ratios. The samples were stored in water for three days to simulate the probable effects of site curing practice. Each concrete was then subjected to three different tests: air permeability and water sorptivity, both conducted in an "Autoclam," and a rapid chloride conductivity test. Time constraints prevented the preparation of a performance specification, but the results were used to prescribe a W/CM ratio and binder type. The results of the investigation also provide the basis for future evaluation of the site concrete by conducting similar tests on cores extracted from the structure. It was established that specifying only on the basis of concrete strength is insufficient to insure a high potential durability.
10.14359/1084
SP153-28
S. I. Pavlenko
Cementless fine-grained concrete based on high-calcium fly ash and slag from thermal power plants was developed by the Siberian Metallurgical Institute in 1990. This paper presents the results of a study of schedules of heat treatment of the cementless concrete aimed at improvement of quality and durability of concrete. Prior to heat treatment, concrete was cured for three, six, and 12 hours at 60, 80, and 100 C. The temperature rise and cooling took three hours each. This cycle was provided by an automatic steam-curing chamber. After moist curing at high temperature using the above cycle, the specimens were tested for compressive strength immediately after cooling to room temperature and at the age of 28 days. It was found that the temperature of the isothermal heating should be in the range of 80 to 100 C. The best results were obtained with 100 C, although it is difficult to achieve this temperature, especially in cast-in-place construction. It also demands a great amount of electrical energy. Therefore, 80 to 90 C should be acceptable as the optimum temperature range. The optimum time of the isothermal heating is 9 to 12 hours. However, the computer processing of the results of the investigation showed that the optimum time of curing was six to seven hours. The technology and recommendations for heating of cementless slag ash concrete, by means of heating wires used in the construction of low-rise houses both in summer and winter periods, have been developed.
10.14359/1085
Results Per Page 5 10 15 20 25 50 100
Edit Module Settings to define Page Content Reviewer