International Concrete Abstracts Portal

International Concrete Abstracts Portal

The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

Showing 1-5 of 12 Abstracts search results

Document: 

SP108-07

Date: 

August 1, 1988

Author(s):

B. Mobasher and T. M. Mitchell

Publication:

Symposium Papers

Volume:

108

Abstract:

The new rapid chloride permeability test, in which chloride ions are driven into concrete samples electrically over a 6-hr period, is becoming widely used and has been accepted as an American Association of State and Highway Transportation Officials (AASHTO) standard, T277. This paper summarizes the results of an extensive series of laboratory tests with the new method. Results of an interlaboratory test program provide single-operator and multilaboratory coefficients of variation suitable for use in a precision statement in the standard versions of the method. Several possible revisions to the AASHTO standard procedure are examined, but further study is necessary before any can be accepted. Test results on specimens with diameters other than the standard 3.75 in. (95 mm) called for in T277 are found to be easily adjusted to allow comparisons with standard size specimens. Several fundamental properties of concrete, namely, water-cement ratio, coarse aggregate type and gradation, and air content, are shown to affect chloride permeability.

DOI:

10.14359/3621


Document: 

SP108-08

Date: 

August 1, 1988

Author(s):

D. J. Janssen

Publication:

Symposium Papers

Volume:

108

Abstract:

Equipment and procedures for measuring actual permeability of portland cement concrete are presented. The equipment is built from readily available parts and materials and requires only standard laboratory air pressure and vacuum sources. The sample size used is 3 in. (7.5 cm) diameter x 3-1/8 in. (8 cm) long, but other sample sizes could be used. Typical measurements are presented to show repeatability and time required for permeability testing. The equipment has been used for permeabilities as low as 1 x 10-11 cm/sec. Concrete with lower permeability would require equipment modifications and/or longer measurement times.

DOI:

10.14359/3633


Document: 

SP108-06

Date: 

August 1, 1988

Author(s):

K. Schonlin and H.K. Hilsorf

Publication:

Symposium Papers

Volume:

108

Abstract:

For the determination of the permeability on concrete discs, a rapid test method has been developed. No special devices are required to fix the test apparatus to the specimen. Air permeability of the concrete can be measured within a period of about 15 min. Laboratory experiments show a close correlation between the measured permeability coefficient and the duration of curing, type of cement, w/c ratio and the content of fly ash.

DOI:

10.14359/3608


Document: 

SP108-02

Date: 

August 1, 1988

Author(s):

S. L. Marusin

Publication:

Symposium Papers

Volume:

108

Abstract:

This paper summarizes the results of permeability studies that have been undertaken since 1979. The research used a test procedure developed during the NCHRP Project 12-19A, "Concrete Sealers for Protection of Bridge Structures", which was reprinted in 1981 as NCHRP Report No. 244. This test method utilizes 10 cm concrete cubes, and chloride ion penetration is determined at 4 depths after 21 days exposure to 15 percent NaCl solution. The test results show that lowering of water-cement ratio in portland cement concrete or presence of superplasticizers, polymer admixtures, and silica fumes are able to significantly reduce concrete permeability.

DOI:

10.14359/2147


Document: 

SP108-03

Date: 

August 1, 1988

Author(s):

C. Ozyildirim and W. Halstead

Publication:

Symposium Papers

Volume:

108

Abstract:

The effects of two pozzolanic admixtures, fly ash and silica fume, and a ground-granulated blast furnace slag on the chloride ion intrusion of concretes prepared with low water-to-cementitious material ratios (0.35 to 0.45) were investigated. Results of the rapid permeability test (AASHTO T 277) showed that the resistance of concrete to the penetration of chloride ions increases significantly as the water-to-cementitious material ratio is decreased for the same proportions of solid ingredients. Most concretes with pozzolans or slag exhibited higher resistance to chloride ion penetration than the control concretes containing portland cement as the cementitious material. Results of the 90-day ponding test (similar to AASHTO T 259), which was conducted with 0.40 w/c concretes only, indicated minimal chloride content at depths below 3/4 in. (19 mm) for all the test concretes. Strength values for all concretes made with the pozzolans and slag at 90 days were in excess of 5000 psi (34.5 MPa), which is satisfactory.

DOI:

10.14359/2158


123

Results Per Page 




Edit Module Settings to define Page Content Reviewer