International Concrete Abstracts Portal

Showing 1-5 of 10 Abstracts search results

Document: 

SP306-01

Date: 

March 1, 2016

Author(s):

Joseph M. Magallanes, Youcai Wu, Shengrui Lan, and John E. Crawford

Publication:

Symposium Papers

Volume:

306

Abstract:

It is widely recognized that a competent constitutive model for concrete, and a set of calibrated parameters for it, are important to producing accurate response predictions using the finite element method (FEM). What is not obvious, without having access to a large database of test data and practical experience using and validating the FEM models, is that a host of parameters for the FEM calculation can significantly influence the results. The objective of this paper is to identify these parameters and illustrate their effect by computing the response of some simple concrete structure tests subject to transient loads. Calculations for each of these structures demonstrate that in addition to some of the more nuanced material model parameters, parameters involving boundary conditions, hourglass energy suppression, interface friction, and loading-rate effects, all have a strong effect on the response predictions. The results demonstrate that any of four concrete constitutive models considered in this paper can be used to match any one set of test data, even though they differ in their assumptions and the behaviors modeled through their formulation; however, it is difficult to match the larger set of data without carefully considering each of these parameters. Guidance is provided to produce meaningful computational results using the constitutive model developed by the authors.

DOI:

10.14359/51688865


Document: 

SP306-02

Date: 

March 1, 2016

Author(s):

Ran Ganel, Eytan Kochavi, and Gabi Ben-Dor

Publication:

Symposium Papers

Volume:

306

Abstract:

A batch of blast resistance reinforced concrete slabs were tested in the shock tube facility at the University of Missouri Kansas City (UMKC). Based on the results from the tests, a blind numerical simulation contest was announced by UMKC in collaboration with the American Concrete Institute (ACI). The authors of this paper participated in the contest and received the test results only after completing their simulations. In this paper two basic numerical approaches are described. The first is a preliminary section rigidity assessment and the second is a full numerical simulation performed with the LS-DYNA code. The numerical results are compared with the UMKC test results and the influence of the numerical parameters is further discussed. The section rigidity assessment approach is then used to explain some unexpected results.

DOI:

10.14359/51688866


Document: 

SP306

Date: 

March 1, 2016

Publication:

Symposium Papers

Volume:

306

Abstract:

Editors: Ganesh Thiagarajan and Eric Williamson

The mission of ACI-ASCE Committee 447 is to develop and report information on the application of finite element analysis methods to concrete structures. The mission of ACI 370 is to develop and report information on the design of concrete structures subjected to blast, impact, and other short-duration dynamic loads. In this Special Publication (SP) and the accompanying presentations made at the ACI Fall 2013 Convention in Phoenix, Arizona, these committees have joined efforts to report on the state of practice in determining the Behavior of Concrete Structures Subjected to Blast and Impact Loadings. Recently, the (2008-2014) National Science Foundation (NSF) funded a study by University of Missouri Kansas City (UMKC) (CMMI Award No: 0748085, PI: Ganesh Thiagarajan) to perform a series of blast resistance tests on reinforced concrete slabs. Based on these results, a Blast Blind Simulation Contest was sponsored in collaboration with American Concrete Institute (ACI) Committees 447 (Finite Element of Reinforced Concrete Structures) and 370 (Blast and Impact Load Effects) and UMKC School of Computing and Engineering. The goal of the contest was to predict the response of reinforced concrete slabs subjected to a specified blast load using a variety of simulation methods. The blast experiments were performed using a Shock Tube (Blast Loading Simulator) located at the Engineering Research and Design Center, U.S. Army Corps of Engineers at Vicksburg, Mississippi.

Over 40 entries were received from researchers and practitioners worldwide; the competition was open to methods used in both research and practice. There were four categories in the contest: 1) Advanced Modeling of slabs with Normal Strength Concrete and Normal Strength Steel, 2) Analytical or Single-Degree-of-Freedom (SDOF) Modeling of slabs with Normal Strength Concrete and Normal Strength Steel, 3) Advanced Modeling of slabs with High Strength Concrete and High Strength Steel, and 4) Analytical or SDOF Modeling of slabs with High Strength Concrete and High Strength Steel. The first- and second-place winners were invited to present their work at the Fall 2013 convention. Furthermore, all teams were invited to submit papers for this SP, and original experimental data were provided to allow the teams to compare their results with those measured. This SP is a result of all the papers that were submitted and reviewed in accordance with ACI peer review requirements. In this SP, there are three papers from academic researchers and six from industry personnel, providing a healthy cross section of the community that works in this area.

The editors gratefully acknowledge all the hard work by the authors, the reviewers, and ACI staff, especially Ms. Barbara Coleman, who have helped very enthusiastically during every stage of the process. The editors also thank members of ACI Committees 447 and 370 for their continuous support in reviewing the papers.

Note: The individual papers are also available. Please click on the following link to view the papers available, or call 248.848.3800 to order. SP-306

DOI:

10.14359/51688861


Document: 

SP306-09

Date: 

March 1, 2016

Author(s):

Gunjan Shetye, Kavya Thadisina, and Ganesh Thiagarajan

Publication:

Symposium Papers

Volume:

306

Abstract:

The aim of this research is to study the blast load response of different types of one way reinforced concrete slabs. The slabs include two material combinations based on their strength namely, the High-Strength Concrete with High-Strength Steel reinforcing bars (HSC-V) and Normal-Strength Concrete with Normal-Strength Steel reinforcing bars (NSC-R) and also two different reinforcement ratios. Experimental data obtained from tests conducted on 12 reinforced concrete slabs in a shock tube (Blast Load Simulator) were used to perform advanced finite element analysis to study the behavior of these slabs subjected to blast loading. Finite element models of these 12 slab panels are developed in LS-DYNA and the blast pressures equivalent to those generated in the experiment are applied on them. The response of material combinations to blast loading is studied using two different concrete models available in LS-DYNA namely, Winfrith Concrete Model (WCM) and Concrete Damage Model Release 3 (CDMR3) with steel being modeled using a plastic kinematic model and the results are compared with experimental data. Compared to NSC-R slabs, the experimental deflection of HSC-V slabs was lower by 9% for slabs with the higher - 0.68% - reinforcement ratio. For the slab with the lower - 0.46% - reinforcement ratio, the experimental deflection was lower by 5% for HSC-V slabs compared to NSC-R slabs, indicating that the usage of high strength materials marginally improved the deflection response of the slabs

DOI:

10.14359/51688873


Document: 

SP306-07

Date: 

March 1, 2016

Author(s):

Tarek H Kewaisy

Publication:

Symposium Papers

Volume:

306

Abstract:

Simulation of structural behavior of Reinforced Concrete (RC) subjected to shock loading is an important aspect of blast-resistant design of military and civilian structures. Depending on the application, different analytical approaches of varying complexities can be used to predict the nonlinear response of various concrete elements to blast loads. This paper reports the findings of a comprehensive study submitted for a Blast Blind Prediction Contest that involved various simulations of blast-loaded concrete slabs. The NSF in collaboration with ACI-447 and ACI-370 committees, Structure-Point and UMKC/ SCE sponsored the contest that included four categories requiring the use of Single Degree Of Freedom (SDOF) and physics-based (HYDROCODE) simulation techniques to predict the responses of one-way reinforced concrete slabs to two levels of blast loading. The study investigated the varying blast response characteristics associated with the use of two classes of concrete, Normal and High Strength and two classes of reinforcement, Normal and High Strength Vanadium. A testing program that encompasses all contest categories was completed at the Blast Loading Simulator (BLS) at the ERDC/ USACE, Vicksburg, MS to collect relevant shock loading and structural response data for various testing configurations. Various SDOF tools (i.e. P-I curves, UFC-3-340-02 charts, RCBlast, and RCProp/ SBEDS) and HYDROCODE constitutive models (LS-DYNA MAT-159, MAT-085, and MAT-072R3) were utilized to simulate various test setup information in order to predict maximum and residual responses and cracking patterns of tested RC slabs. Despite their major differences in modeling capabilities, analytical efforts, and inherent accuracy, all utilized simulation techniques were successful in predicting blast responses of investigated RC slabs with sufficient practical accuracy. Acknowledging their modeling limitations, SDOF simulations exhibited excellent capabilities in predicting overall behavior and maximum responses with a level of accuracy that is well suited for design applications. On the other hand, HYDROCODE simulations proved superior in their response and damage predictions owing to their modeling capabilities that allowed realistic end conditions, material nonlinearities, and strain-rate effects.

DOI:

10.14359/51688871


12

Results Per Page 





ABOUT THE INTERNATIONAL CONCRETE ABSTRACTS PORTAL

  • The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

Edit Module Settings to define Page Content Reviewer