• The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

International Concrete Abstracts Portal


Title: Impact Resistance and Mechanical Properties of Lightweight Self-Consolidating Concrete under Cold Temperatures

Author(s): Ahmed T. Omar, Mohamed M. Sadek, and Assem A. A. Hassan

Publication: Materials Journal

Volume: 117

Issue: 5

Appears on pages(s): 81-91

Keywords: cold temperature; fiber-reinforced concrete; impact resistance; lightweight expanded slate aggregate; self-consolidating concrete

Date: 9/1/2020

This study aims to evaluate the impact resistance and mechanical properties of a number of developed lightweight self-consolidating concrete (LWSCC) mixtures under cold temperatures. To achieve LWSCC mixtures with minimum possible density, the authors explored different replacement levels of normalweight fine or coarse aggregates by lightweight fine and coarse expanded slate aggregates. The studied parameters included testing temperature (+20°C, 0°C, and –20°C), type of lightweight aggregate (either fine or coarse expanded slate aggregates), binder content (550 and 600 kg/m3 [34.3 and 37.5 lb/ft3]), coarse-to-fine (C/F) aggregate ratio (0.7 and 1.0), and the use of polyvinyl alcohol (PVA) fibers (fibered and nonfibered mixtures). The results indicated that for all tested mixtures, decreasing the temperature of concrete below room temperature significantly improved the mechanical properties and impact resistance. Increasing the percentage of lightweight fine or coarse aggregate in the mixture showed more improvement in the mechanical properties and impact resistance under cold temperatures. However, the failure mode of all tested specimens appeared to be more brittle under subzero temperatures. It was also observed that the inclusion of PVA fibers helped to compensate for the brittleness that resulted from decreasing the temperature, and it further enhanced the impact resistance and mechanical properties under low temperatures.


Electronic Materials Journal


Please enter this 5 digit unlock code on the web page.