ABOUT THE INTERNATIONAL CONCRETE ABSTRACTS PORTAL

  • The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

International Concrete Abstracts Portal

Showing 1-5 of 250 Abstracts search results

Document: 

SP356_10

Date: 

October 1, 2022

Author(s):

Roberto Rodriguez, Vanessa Benzecry, Steven Nolan, and Antonio Nanni

Publication:

Symposium Papers

Volume:

356

Abstract:

Glass fiber-reinforced polymer (GFRP) bars show promise as a non-corrosive reinforcement alternative for coastal marine applications. Designers are reluctant to use new material systems without guidance or case studies demonstrating successful implementation. For the case of precast concrete piles, the current practice is prestressing with carbon steel strands. In this paper, a seawall replacement project in South Florida allowed for the demonstration of the use of reinforced concrete (RC) piles using GFRP bars and spirals. The field performance of the GFRP-RC piling system was validated by collecting data during driving by means of a pile driving analyzer (PDA). The measured internal stresses in the pile were compared with code requirements and concrete compressive strength determined from laboratory tests. The structural design used for these GFRP-RC piles and field-collected data on pile resistance, stresses, and integrity is presented and discussed in this paper.

DOI:

10.14359/51737269


Document: 

SP-355_01

Date: 

July 1, 2022

Author(s):

Gilberto Artioli, Anna Bravo, Stefano Broggio, Giorgio Ferrari, Francesco Santonicola, Francesco Surico, Luca Torelli, Luca Valentini, Andrea Zecchini

Publication:

Symposium Papers

Volume:

355

Abstract:

The new San Giorgio bridge replaced the Polcevera viaduct, built between 1963 and 1967 and collapsed during a storm in summer 2018. The new bridge was designed by Renzo Piano and is made by 19 steel spans supported by 18 concrete pillars. Beside the architectural aspects, special attention was devoted to the mix-design of the pillars, to ensure the production of durable concrete in the marine environment. The use of slag cement combined with limestone filler and polycarboxylate superplasticizers allowed to cast flowable concrete associated with low water to cement ratio and high final compressive strength. A new generation accelerating admixtures, working on the homogeneous nucleation technology, was used to accelerate the cement hydration and gain early compressive strength to speed-up the elevation of the pillars. In the present paper, the advantage of using the new admixture is discussed both in terms of early strength development and microstructure of the cement paste. Beside the improvement of the early strength development, the new admixture reduced the water permeability and the chloride diffusion and improved the resistance to carbonation of the concrete used for the pillars, with further advantages for the durability of this structure.

DOI:

10.14359/51736007


Document: 

SP337

Date: 

January 30, 2020

Author(s):

ACI Committee 357 – Offshore and Marine Concrete Structures, Mohammad S. Khan

Publication:

Symposium Papers

Volume:

337

Abstract:

Offshore and marine concrete structures have not received enough attention in the recent past, at least in the United States. The complexity and safety concerns associated with these structures are such that they probably need more attention compared to many other types of concrete structures. Also, offshore and marine concrete structures are so global in nature that there is a higher need for better coordination and synchronization of design, construction, inspection, and maintenance practices in different parts of the world. A two-part session, titled “Offshore and Marine Concrete Structures: Past, Present, and Future,” was held at the Spring 2019 ACI Concrete Convention and Exposition on March 24-28 in Quebec City, Quebec, Canada. The session, sponsored by ACI Committee 357, Offshore and Marine Concrete Structures, highlighted accomplishments of the past, current state-of-the-practice, and a path for the future. This ACI Special Publication (SP) is a compilation of select papers presented at the session. The efforts of all the reviewers in assuring the quality of this publication is greatly acknowledged.

DOI:

10.14359/51724587


Document: 

SP-337_06

Date: 

January 23, 2020

Author(s):

Edward (Ted) Moffatt, Michael Thomas and Andrew Fahim

Publication:

Symposium Papers

Volume:

337

Abstract:

In 1978, the Canadian Centre of Mineral and Energy Technology (CANMET) initiated a longterm study to determine the performance of concrete in a marine environment. Between 1978 and 1994, over three hundred prisms as part of 14 different experimental phases were placed at the mid-tide level at the Treat Island exposure site. Treat Island is an outdoor exposure site operated by the U.S. Army Corps of Engineers, and lies in the Passamaquoddy Bay, part of the Bay of Fundy, near the town of Eastport in Maine. Following 25 years of exposure, the blocks were retrieved after being exposed to tidal conditions representing approximately 18,250 cycles of wetting and drying, and 2,500 cycles of freezing and thawing. This paper presents the durability performance of concrete from several phases of the CANMET study. This includes concrete incorporating various levels of supplementary cementing materials (up to 80% by mass of cementing material in some cases), with normal density and light-weight aggregate. The paper also compares output from the service-life model Life-365 with experimental chloride profile data. The results indicate the efficacy of SCMs in increasing the concrete resistance to chloride penetration. However, use of very high levels of these materials was found to render the concrete more susceptible to surface scaling. The results also showed that Life-365 model can predict chloride penetration adequately with very simple inputs.

DOI:

10.14359/51724549


Document: 

SP-337_07

Date: 

January 23, 2020

Author(s):

Pericles C. Stivaros; Varoujan Hagopian; and Alan D. Pepin

Publication:

Symposium Papers

Volume:

337

Abstract:

This paper discusses the structural assessment and repair of a waterfront concrete pier. This paper also discusses the responsibilities of the construction team through the investigation and repair process. The apron around the pier is an exposed concrete deck supported on steel beams and concrete caissons. The concrete apron exhibited various deteriorated conditions, including cracking and spalling. The pier owner requested a structural condition survey of the pier apron to determine the extent of the damage and to develop a repair program.

The design team proposed an investigation and repair program in accordance with various industry standards, including ACI 357, ACI 562, and ACI 364.1R. The challenge of this project was the limited budget and time allocated by the owner to perform the investigation and repair. As a result, the investigation was limited to visual observations only, and the repairs were restricted to repairing unsafe conditions only. Despite the investigation and repair construction limitations, the design team work around the needs and budgets of the owner and managed to restore the structure to a safe condition. However, the effects of insufficient evaluation of the structure before rehabilitation, had an adverse effect on the project schedule and extent of repairs performed. Also, due to the project budget limitations, the responsibilities of the design team were challenged.

DOI:

10.14359/51724550


12345...>>

Results Per Page