ABOUT THE INTERNATIONAL CONCRETE ABSTRACTS PORTAL

  • The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

International Concrete Abstracts Portal

Showing 1-5 of 182 Abstracts search results

Document: 

SP-360_48

Date: 

March 1, 2024

Author(s):

Mehdi Khorasani, Giovanni Muciaccia, and Davood Mostofinejad

Publication:

Symposium Papers

Volume:

360

Abstract:

Mehdi Khorasani, Giovanni Muciaccia, and Davood Mostofinejad Synopsis: The externally bonded reinforcement on grooves (EBROG) technique has been recently shown to outperform its rival techniques of surface preparation (such as externally bonded reinforcement, EBR) employed to delay the undesirably premature debonding of fiber reinforced polymer (FRP) from the concrete substrate in retrofitted structure. However, the behavior of EBROG method under fatigue loading has not been assessed yet, and the present study is the first attempt to achieve the above aim. For this purpose, an experimental program is conducted in which 16 CFRP-to-concrete bonded joints on the concrete slab prepared through the EBROG and EBR techniques are subjected to the single lap-shear test and fatigue cyclic loading. Furthermore, the bond behavior of CFRP strips-to-concrete substrate is investigated in this research in terms of the load capacity, slip, debonding mechanism, and fatigue life. The results showed that the grooving method improved the bond properties of CFRP-to-concrete joints under fatigue loading. By using this alternative technique, the number of cycles until failure (fatigue life) increases incredibly under the same fatigue cycle loading and the service life of strengthened members could be improved under fatigue loading. Furthermore, the effects of different loading levels on the behavior of CFRP-concrete joints installed by EBROG method are evaluated. The results showed that fatigue life of strengthened specimens decreases by increasing fatigue upper load limit. Finally, a new predictive equation was developed based on plotting the maximum applied fatigue load versus fatigue life curves for CFRP-to-concrete bonded joints for the EBROG method.

DOI:

10.14359/51740660


Document: 

SP-360_47

Date: 

March 1, 2024

Author(s):

Bartosz Piątek and Tomasz Siwowski

Publication:

Symposium Papers

Volume:

360

Abstract:

Due to a dynamic development of infrastructure, engineers around the world are looking for new materials and structural solutions, which could be more durable, cheaper in the life cycle management, and built quickly. One of prospective solutions for building small-span bridges can be precast lightweight concrete reinforced with glass fiber-reinforced polymer (GFRP) rebars. Thanks to prefabrication, it is possible to shorten the construction time. Using lightweight concrete affects structure weight as well as transportation costs. GFRP rebars can make the structure more durable and also cheaper in terms of life cycle management costs. The paper focuses on the fatigue performance of a real-scale arch (10.0 m (33 ft) long, 1.0 m (3.3 ft) wide, and 2.4 m (7.9 ft) high) made of lightweight concrete and GFRP rebars (LWC/GFRP) in comparison with an arch made of normal weight concrete and typical steel reinforcement (NWC/steel). The fatigue loads ranging from 12 to 120 kN (2.7 to 27 kip) were applied in a sinusoidal variable manner with a frequency of 1.5 Hz. This research revealed that the NWC/steel arch exhibited significantly better fatigue resistance when compared to the LWC/GFRP arch. Differences in the behavior of the NWC/steel and LWC/GFRP models under fatigue load were visible from the beginning of the research. The LWC/GFRP model was exposed to fatigue loads, resulting in gradual deterioration at an early stage. This degradation was evident through stiffness being progressively reduced, leading to increased displacements and strains as the number of load cycles increased. The model did not withstand the fatigue load and was destroyed after approximately 390 thousand load cycles, in contrast to the NWC/steel model, which withstood all 2 million load cycles without significant damages or the stiffness being decreased. However, the prefabricated lightweight concrete arches with composite reinforcement seem to be an interesting alternative of load-bearing elements in infrastructure construction.

DOI:

10.14359/51740659


Document: 

SP-360_46

Date: 

March 1, 2024

Author(s):

Charles Tucker Cope III, Mohammod Minhajur Rahman, Francesco Focacci, Tommaso D’Antino, Iman Abavisani, and Christian Carloni

Publication:

Symposium Papers

Volume:

360

Abstract:

GFRP bars are considered an alternative to steel for concrete reinforcement. This project investigated the fatigue behavior of GFRP bars embedded in concrete, studying bond behavior at material and structural scales. GFRP bars (12 mm [0.47 in.] nominal diameter) were embedded in concrete cylinders leaving a 50 mm [2 in.] protrusion at the free end and featuring different bonded lengths. Two types of GFRP bars with different surface treatment (lacquered and unlacquered) were used. Static tests were used to determine the bonded length required for cyclic pull-out tests, Cyclic tests at 1.5 Hz showed GFRP bar failure was possible at just 20% of their reduced tensile strength (0.8ffu) as prescribed in ACI 440.1R-15. Two full-scale slabs internally reinforced with unlacquered GFRP bars were tested using a four-point bending configuration. A quasi-static test was used as a control to determine the fatigue amplitude, considering the fatigue loading provided by the ACI 440.1R-15 document and the pull-out test results with cyclic loading presented in this work. Cyclic load between 10 kN [2.25 kips] and 40 kN [9 kips] at a 1.5 Hz frequency was applied up to 5 million cycles before a subsequent quasi-static test was conducted. The load range was determined using cross-section analysis to cycle the bars between 5% and 20% of their reduced tensile strength (0.8ffu). Both slabs ultimately failed due to shear failure, with cyclic loading having little impact on the slab compliance. Displacements of the load points and supports were measured using linear variable displacement transformers (LVDTs), while digital image correlation (DIC) was utilized to obtain the full-field displacement and strain in the central region of the slab. The strain and displacement fields from DIC were used to determine the opening of flexural cracks and relate it to the stress level in the GFRP bars. A comparison between the static pull-out tests and the four-point bending tests of slabs indicated that the pull-out test could be used to describe the flexural behavior of the slab at low stress level. However, in terms of fatigue behavior, the comparison between the small- and large-scale tests indicated that the fatigue phenomenon in the slab was quite complex and could not be directly described by the results of pull-out tests.

DOI:

10.14359/51740658


Document: 

SP358_10

Date: 

September 1, 2023

Author(s):

Mahesh Acharya, Jose Duran, and Mustafa Mashal

Publication:

Symposium Papers

Volume:

358

Abstract:

The use of Titanium Alloy Bars (TiABs) for flexural and transverse reinforcing in new bridge piers located in seismic zones aims to incorporate both durability and seismic resiliency. TiABs offer advantages such as: higher strength, good ductility, excellent durability, and enhanced fatigue-resistance compared to traditional reinforcing bars. The research focuses on the application of TiABs in construction of new bridges located in seismic and corrosive environments. Application of TiABs in bridge piers increases service life, reduces rebar congestion, yields to lower overstrength factor, and limits residual displacement following an earthquake. An approximately 1/3rd scale bridge pier reinforced with TiABs rebars and spirals is tested under quasi-static cyclic loading protocol to investigate seismic performance. The performance of the pier was compared against an equivalent pier reinforced with normal steel rebars and spirals. Results from testing suggested enhanced performance of a pier reinforced with TiABs in terms of reducing rebar congestion, ductility, and residual displacement following a seismic event. The structural performance and durability of bridge piers reinforced with TiABs is not compromised in moderate earthquakes as smaller flexural cracks that are more likely to appear in the plastic hinge zones are not a major concern for this pier.

DOI:

10.14359/51740237


Document: 

SP356_13

Date: 

October 1, 2022

Author(s):

Mohamed Ahmed, Slimane Metiche, and Radhouane Masmoudi

Publication:

Symposium Papers

Volume:

356

Abstract:

The development of rehabilitation strategies for reinforced concrete bridges is a significant concern for civil engineers. Bridges exposed to harsh environmental conditions and subjected to daily fatigue loading are vulnerable to corrosion and accelerated deterioration of their components. Previous studies and field applications have shown that bonding carbon fiber-reinforced polymer (CFRP) to the bridge element surface is an attractive solution for bridge strengthening. This paper aims at reviewing and evaluating the use of externally bonded CFRP for bridge rehabilitation. The article is structured in two main parts. The first part is an experimental and field survey on using CFRP as external reinforcement for concrete bridges. The second part focuses on evaluating the performance of the Original Champlain Bridge (OCB) edge girder strengthened with externally bonded CFRP under live load tests, which were performed by the developers of the bridge. The results of truckload tests on the edge girder of the OCB show that the rehabilitation technique using externally bonded CFRP sheets on the edge girder of the bridge was able to keep the shear strains constant and extend their service life for up to 10 years until deconstruction of the bridge.

DOI:

10.14359/51737272


12345...>>

Results Per Page