ABOUT THE INTERNATIONAL CONCRETE ABSTRACTS PORTAL

  • The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

International Concrete Abstracts Portal

Showing 1-5 of 2187 Abstracts search results

Document: 

SP-360_06

Date: 

March 1, 2024

Author(s):

Zhao Wang and Baolin Wan

Publication:

Symposium Papers

Volume:

360

Abstract:

The use of fiber-reinforced polymer (FRP) composites for external bonding has become a popular and widely accepted technique for enhancing the strength of concrete structures due to its excellent mechanical performance, corrosion resistance, and ease of construction. However, premature debonding is a major challenge as it prevents the full capacity of FRP composites from being achieved, resulting in material waste. Recently, grooving the surface of concrete before bonding FRP has emerged as a potential solution to this problem. Several experimental studies have evaluated the bond strength of FRP-to-concrete joints with grooves. To facilitate the practical application of this technique, it is necessary to develop comprehensive reliability-based design guidelines that account for the uncertainty arising from various aspects such as materials, model errors, and loading. A critical factor of such analysis is the calibration of model uncertainty which significantly affects the accuracy of reliability-based design and analysis. The objective of this study was to measure the model uncertainty of the existing prediction model for FRP-to-concrete joint with a longitudinal groove by involving the model factor which is defined as the ratio of observed values from experimental test to calculated values from prediction models. To eliminate the potential correlation from critical parameters, the residual model factor was isolated from model factor by separating the systematic part. The lognormal distribution was found to be the most suitable distribution function to describe the residual model factor, and the mean and variance were determined. With this newfound knowledge, we are better equipped to account for uncertainties in the design and construction of FRP-to-concrete connections with grooves, which will ultimately result in more durable and reliable structural improvements.

DOI:

10.14359/51740618


Document: 

SP-360_30

Date: 

March 1, 2024

Author(s):

Yasser M. Selmy and Ehab F. El-Salakawy

Publication:

Symposium Papers

Volume:

360

Abstract:

The seismic performance of reinforced concrete (RC) bridge columns subjected to multidirectional ground motions is a critical issue, as these columns can experience axial compression, bending, and torsional loading. Moreover, steel corrosion is a significant concern in existing bridges, leading to deficiencies in steel-RC structural members. The use of glass fiber-reinforced polymer (GFRP) reinforcement has been established as a practical and effective solution to mitigate the corrosion-related issues associated with traditional steel reinforcement in concrete structures. However, the dissimilar mechanical properties of GFRP and steel have raised apprehensions regarding its feasibility in seismic-resistant structures. The current study involves conducting an experimental investigation to assess the feasibility of utilizing GFRP reinforcement as a substitute for conventional steel reinforcement in circular RC bridge columns subjected to cyclic lateral loading, which induces shear, bending, and torsion. One column was reinforced with GFRP bars and stirrups, while the other column, served as a control and was reinforced with conventional steel reinforcement. The aim of this investigation was to analyze the lateral displacement deformability and energy dissipation characteristics of the GFRP-RC column. The results showed that GFRP-RC column exhibited stable post-peak behavior and high levels of deformability under the applied combined loading. Additionally, with a torsion-to-bending moment ratio of 0.2, both columns reached similar lateral load and torsional moment capacities and were able to attain lateral-drift capacities exceeding the minimum requirements of North American design codes and guidelines.

DOI:

10.14359/51740642


Document: 

SP-361_04

Date: 

March 1, 2024

Author(s):

Kimberly Waggle Kramer, Lauren Costello, Katie Loughmiller, and Christopher Jones

Publication:

Symposium Papers

Volume:

361

Abstract:

This research studies the use of a fractional coarse aggregate replacement product (PA). PA is a unique blend comprised of recycled plastics, glass, and minerals; all collected from the waste stream. The use of PA and other similar products may contribute to reducing plastic waste in the waste stream. To test the feasibility of PA as a partial, natural aggregate replacement, four different mixtures of concrete were batched and tested. The concrete mixtures were based on the standard commercial interior normal-weight concrete mixture. This is a non-air-entrained mixture, provided by a local concrete batching plant (MCM), with a design strength of 4000 psi (27.6 MPa). The four concrete mixtures tested were a control mixture with no variations to the original mixture design as well as three mixtures with 15%, 30%, and 45% coarse aggregate replacement by volume. The compression strength, tensile splitting strength, modulus of rupture, and density of the concrete are examined. The focus of the paper is the concrete compressive strength because it is the primary determining factor in concrete design. Fresh concrete properties and hardened concrete properties were examined and recorded. Slight changes to the overall fresh concrete properties of workability, density, and slump were recorded. The hardened concrete properties include compression, tensile splitting, and modulus of rupture. The results of the compression tests show a strength proportionally decreased with the percent increase in PA replacement – 15% replacement with an 18.1% decrease, 30% replacement with a 35.6% decrease, and a 45% replacement indicated a 45.3% decrease at the 28-day test. The results of the tensile splitting tests and modulus of rupture tests both indicate similar results of a decrease in strength as the replacement rate of PA increased.

DOI:

10.14359/51740606


Document: 

SP-360_11

Date: 

March 1, 2024

Author(s):

Mohamed Ahmed, Slimane Metiche, Radhouane Masmoudi, Richard Gagne, and Jean- Philippe Charron

Publication:

Symposium Papers

Volume:

360

Abstract:

his paper presents preliminary experimental and numerical results of a research program aimed at investigating the residual capacity of 60-year-old reinforced concrete bridge girders strengthened using CFRP sheets. Two 4.5 m and 5.0 m long, bridge girders were deconstructed from a bridge located in Canada. The two 60-year-old girders have been strengthened with CFRP for the last six years of the service life of the bridge. The two full-scale girders were tested at the structural lab of Sherbrooke’s University after having suffered under real service conditions. A finite element model using the ANSYS program had been validated with the experimental results before it was used as a control sample for non-strengthened conditions. The test results revealed that the CFRP strengthening technique can extend the service life of the bridge element by keeping their shear capacity safe. The CFRP strengthening configuration of the two girders increased the maximum shear capacity by 35.5 % and 30 % over the finite element control model. The presented outcomes show the effectiveness of using the external CFRP sheets as an external technique for bridge rehabilitation. The test results were compared with the ACI 440 2R-17 and CSA S6-19 design guidelines. The theoretical comparison between guidelines, experimental and numerical results shows that the two guidelines are considered overly conservative.

DOI:

10.14359/51740623


Document: 

SP-360_37

Date: 

March 1, 2024

Author(s):

Ahmad Ghadban and Hayder A. Rasheed

Publication:

Symposium Papers

Volume:

360

Abstract:

The release of ACI 440.11-22 building design code for concrete structures reinforced with GFRP bars comes with several challenges at various fronts. One such challenge is tackled in this paper which is the development of limit interaction diagrams for elliptical bridge columns reinforced with GFRP bars under biaxial bending plus axial compression/tension. This type of columns requires special considerations at all levels. This paper depicts the various formulations encountered herein in a detailed treatment highlighting the critical steps to build an efficient analysis algorithm. The formulation is implemented into a user-friendly software developed using object-oriented programming, namely the C# programming language. The robustness of the formulation is tested by comparing interaction diagrams of elliptical sections to those of corresponding rectangular sections. The significance of an ACI code comment requiring bar orientation being considered for circular sections with less than 8 bars is also examined in this paper. This paper also tests the ACI recommendation to neglect GFRP action in compression. Results indicate reasonable similarity among interaction diagrams of elliptical and rectangular sections leading to the conclusion that the formulation presented herein provides an accurate tool to analyze elliptical sections.

DOI:

10.14359/51740649


12345...>>

Results Per Page