ABOUT THE INTERNATIONAL CONCRETE ABSTRACTS PORTAL

  • The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

International Concrete Abstracts Portal

Showing 1-5 of 435 Abstracts search results

Document: 

22-290

Date: 

May 1, 2024

Author(s):

Ahmed T. Omar, Basem H. AbdelAleem, Assem A. A. Hassan

Publication:

Materials Journal

Abstract:

This paper investigates the structural performance of lightweight self-consolidating concrete (LWSCC) and lightweight vibrated concrete (LWVC) beam-column joints reinforced with mono-filament polyvinyl alcohol (PVA) fibers under quasi-static reversed cyclic loading. A total of eight exterior beam-column joints with different lightweight aggregate types (coarse and fine expanded slate aggregates), different PVA fiber lengths (8-12 mm [0.315-0.472 in.]), and different percentages of fiber (0.3% and 1%) were cast and tested. The structural performance of the tested joints was assessed in terms of failure mode, hysteretic response, stiffness degradation, ductility, brittleness index, and energy dissipation capacity. The results revealed that LWSCC specimens made with expanded slate fine aggregates (LF) appeared to have better structural performance under reversed cyclic load compared to specimens containing expanded slate coarse aggregates (LC). Shortening the length of PVA fibers enhanced the structural performance of LWSCC beam-column joints (BCJs) in terms of initial stiffness, load-carrying capacity, ductility, cracking activity, and energy dissipation capacity compared to longer fibers. The results also indicated that using an optimized LWVC mixture with 1% PVA8 fibers and a high LC/LF aggregate ratio helped to develop joints with significantly enhanced load-carrying capacity, ductility, and energy dissipation while maintaining reduced self-weight of 28% lower than normal-weight concrete.

DOI:

10.14359/51740773


Document: 

23-010

Date: 

January 1, 2024

Author(s):

Sahith Gali and Sri Sritharan

Publication:

Materials Journal

Volume:

121

Issue:

1

Abstract:

Ultra-high-performance concrete (UHPC) is a cementitious concrete material known for its sustained post-cracking tensile performance. Various specimen geometries and different test approaches have been used to establish the tensile characteristics of UHPC. Intending to standardize a direct tension test method, this paper independently evaluates a procedure developed by the Federal Highway Administration (FHWA), which has been adopted into AASHTO T 397. To verify the reliability and repeatability of the test method, 216 tensile specimens were cast from three different UHPC types with fiber-volume fractions of 1, 2, and 3% and tested at six laboratories. The measured responses were characterized for different phases of the tensile behavior and analyzed to understand the scatter in the test data. It was found that testing can be executed with a 60 to 70% success rate with carefully prepared samples and some modifications to the proposed test method. The test results show an increase in both the tensile strength and multicracking phase with an increase in fiber-volume fraction, but the crack straining phase depends primarily on the type of UHPC. Using the test data, average and characteristic tensile responses were established, which are intended, respectively, for analysis and design purposes.

DOI:

10.14359/51739204


Document: 

22-073

Date: 

December 1, 2023

Author(s):

Zhenwen Xu and Dongming Yan

Publication:

Materials Journal

Volume:

120

Issue:

6

Abstract:

External bonding with fiber-reinforced polymer (FRP) offers a potential solution to mitigate the detrimental effects caused by load impact and corrosion, which can weaken the bond strength of reinforced concrete structures. However, existing models need to be improved in addressing the FRP confinement mechanism and failure modes. As a solution, the proposed model employs stress intensity factor (SIF)-based criteria to determine the internal pressure exerted on the steel-concrete interface during various stages of comprehensive concrete cracking. Critical parameters are evaluated using weight function theory and a finite element model. A bond-slip model is introduced for the FRP-concrete interface and reasonable assumptions on failure plane characteristics. The internal pressure model employed demonstrates that FRP confinement has the ability to generate dual peaks in stress distribution and modify their magnitude as the confinement level increases. The proposed predictive model demonstrates superior performance in failure modes, test methods, and wrap methods for assessing bond strength with FRP confinement. The accuracy of this model is indicated by an integral absolute error (IAE) of 9.6% based on 125 experimental data, surpassing the performance of the other three existing models. Moreover, a new confinement parameter is introduced and validated, showing an upper bound of 0.44 for enhancing FRP bond strength. Additionally, a general expression validating the bond strength model with FRP confinement is established, allowing for the prediction of bond length.

DOI:

10.14359/51739144


Document: 

21-483

Date: 

September 1, 2023

Author(s):

Nima Mohammadian Tabrizi, Davood Mostofinejad, and Mohammad Reza Eftekhar

Publication:

Materials Journal

Volume:

120

Issue:

5

Abstract:

This paper is aimed at investigating the effects of different fiber inclusion on the mechanical properties of ultra-high-performance concrete (UHPC) by adding mineral admixtures as cement replacement materials to reduce production costs and CO2 emissions of UHPC. Throughout this research, 21 mixture designs containing four cement substitution materials (silica fume, slag cement, limestone powder, and quartz powder) and three fibers (steel, synthetic macrofibers, and polypropylene) under wet and combined (autoclave, oven, and water) curing were developed. To investigate the mechanical properties in this research, a total of 336 specimens were cast to evaluate compressive strength, the modulus of rupture (MOR), and the toughness index. The findings revealed that at the combined curing, regarded as a new procedure, all levels of cement replacement recorded a compressive strength higher than 150 MPa (21.76 ksi). Furthermore, the mechanical properties of the mixture design containing microsilica and slag (up to 15%) were found to be higher than other cement substitutes. Also, it was shown that all levels of the fiber presented the MOR significantly close together, and samples made of synthetic macrofibers and steel fibers exhibited deflection-hardening behavior after cracking. The mixture design containing microsilica, slag, limestone powder, and quartzpowder, despite the significant replacement of cement (approximately 50%) by substitution materials, experienced a slight drop in strength. Therefore, the development of this mixture is optimal both economically and environmentally.

DOI:

10.14359/51738888


Document: 

22-163

Date: 

May 1, 2023

Author(s):

Rimvydas Kaminskas, Irmantas Barauskas, and Edvinas Kazlauskas

Publication:

Materials Journal

Volume:

120

Issue:

3

Abstract:

The main objective of this study was to investigate the possibility of using a mixture of two different wastes—spent catalyst from the oil cracking process and spent smectite clay from the alimentary oil bleaching process—as supplementary cementitious materials (SCMs). The spent catalyst was used as received, and the smectite clay waste was further thermally activated at 600°C. Both wastes were found to contain amorphous compounds and to have good pozzolanic activity. Fifteen wt. % of portland cement was replaced by these wastes mixed in different proportions. It was found that the additives from a mixture of these wastes accelerated the early hydration of the cement in a complex manner. The smectite clay component promotes the hydration reactions of calcium silicates, while the catalyst component activates the reaction of the aluminate-bearing phase. A similar complex trend was found for the compressive strength of the samples: the higher compressive strength of the cement samples produced the catalyst component at shorter periods of hydration, but as the duration of hydration increased to 28 days, a smectite clay component began to impart greater compressive strength. The mixture of 70 wt. % spent catalyst and 30 wt.% smectite clay waste was found to have the best strength properties, and up to 20 wt. % portland cement could be replaced using these admixtures.

DOI:

10.14359/51738684


12345...>>

Results Per Page