ABOUT THE INTERNATIONAL CONCRETE ABSTRACTS PORTAL

  • The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

International Concrete Abstracts Portal

Showing 1-5 of 696 Abstracts search results

Document: 

SP-360_45

Date: 

March 1, 2024

Author(s):

C. Barris, F. Ceroni, A. Perez Caldentey

Publication:

Symposium Papers

Volume:

360

Abstract:

Serviceability checks in Reinforced Concrete (RC) elements involves the verification of crack width mainly aimed to limit the exposure of the steel reinforcement to corrosion and chemical attack and, thus, improve durability. Classical approaches for assessing the crack width in RC elements provide the calculation of two terms: 1) the average crack spacing, and 2) the average difference between the strain in the steel reinforcement and in the concrete in tension referred to the average crack spacing. A similar approach can be assumed valid also for RC elements strengthened with externally bonded Fiber Reinforced Polymer (FRP) materials, taking into account the additional tension stiffening effect provided by the external reinforcement.

This paper presents the comparisons of some existing code formulations for predicting crack spacing and crack width in RC elements with the experimental results of a database collected by the Authors and concerning tests on RC beams and ties externally bonded with different types and configurations of FRP materials. The paper is mainly aimed to check the reliability of the existing equations provided by codes in order to address the future assessment of reliable design provisions for cracking verifications in RC elements strengthened with FRP materials. The comparisons have evidenced, indeed, some useful issues for the design provisions: 1) larger scatter in the predictions of crack width than in crack spacing and, in particular, for ties, 2) limited effect of shrinkage on crack width, 3) necessity of taking into account the external reinforcement in crack spacing formulations, 4) good reliability of mechanical models for calculating cracks width.

DOI:

10.14359/51740657


Document: 

SP-360_44

Date: 

March 1, 2024

Author(s):

Raphael Kampmann, Carolin Martens, Srichand Telikapalli, and Alvaro Ruiz Emparanza

Publication:

Symposium Papers

Volume:

360

Abstract:

While reinforced concrete is one of the most used construction materials, traditional reinforcement steel may cause undesirable side effects, as corrosion and the associated volume changes can lead to damages in the concrete matrix and can cause spalling, which may significantly reduce the load-bearing capacity and service life of structures. Alternative reinforcement methods, such as glass or basalt fiber reinforced polymer rebars, can serve as a viable alter-native to reduce or eliminate some of the disadvantages associated with steel reinforcement. In addition to an increased tensile strength and a reduction in weight, fiber reinforced polymer rebars also offer a high corrosion resistance among other beneficial properties. Because these materials are not fully regulated yet and the durability properties have not been conclusively determined, further research is needed to evaluate the material durability properties of FRP rebars. To determine the durability properties of GFRP and BFRP rebars in cold climates, the freeze-thaw resistance of these materials was evaluated throughout this study. Specifically, two types of materials (basalt and glass reinforced polymers) and two common rebar sizes (8 mm (#2) and 16 mm (#5) diameters) were tested. To quantify the freeze-thaw-durability, tensile tests according to ASTM D7205, transverse shear strength tests in line with ASTM D7617, and horizontal shear strength tests as specified in ASTM D4475 were conducted on numerous virgin fiber rebars and on fiber rebars that were subjected to 80 and 160 freeze-thaw cycles. While the results from the virgin materials served as benchmark values, the measurements and analysis from the aged (by freeze-thaw cycles) materials were used to quantify and determine the strength retention capacity of these bars. The results showed that a higher number of freeze-thaw cycles lead to lower strength retention for some rebar types. In addition, it was seen that rebar products respond differently to the aging process; while some material properties notably deteriorated, other material properties were insignificantly affected.

DOI:

10.14359/51740656


Document: 

SP-360_35

Date: 

March 1, 2024

Author(s):

Ramin Rameshni, PhD, P.Eng., Reza Sadjadi, PhD, P.Eng, Melanie Knowles, P.Eng., M.Eng.

Publication:

Symposium Papers

Volume:

360

Abstract:

Deterioration of concrete bridges has resulted in reduction of their service lives and increase in required maintenance which is associated with cost and inconvenience to the public. A prevalent cause of concrete bridge deterioration is corrosion which initiates by chloride ions penetration past the protecting layers and by corroding the steel reinforcement. Because corrosion in prestressed concrete members has more serious consequences than in non-prestressed reinforced concrete, it is important that bridge designers and inspectors be aware of the potential problems and environments that may cause the issue and address them as soon as they are detected. This paper discusses a case study of a highway bridge (Hyndman Bridge, Ontario) including its deterioration, causes, mitigation measures, structural evaluation and the selected repair method. The rehabilitation design is based on guidelines of the latest editions of the CHDBC and ACI 440.2R. CFRP strengthening techniques have been proposed to address the flexure and shear deficient capacity of deteriorated girders. It is concluded that by using a suitable repair methodology employing CFRP, it is possible to upgrade the bridge to comply with the latest requirements of the code and increase the service life of the structure which otherwise would have needed imminent replacement.

DOI:

10.14359/51740647


Document: 

SP-360_34

Date: 

March 1, 2024

Author(s):

Adi Obeidah and Hani Nassif

Publication:

Symposium Papers

Volume:

360

Abstract:

Developments in the prestressed concrete industry evolved to incorporate innovative design materials and strategies driven towards a more sustainable and durable infrastructure. With steel corrosion being the biggest durability issue for concrete bridges, FRP tendons have been gaining acceptance in modern prestressed technologies, as bonded or unbonded reinforcement, or as part of a “hybrid” system that combines unbonded CFRP tendons and bonded steel strands. Assessments of the efficacy of hybrid-steel beams, combining bonded and unbonded steel tendons. in the construction of segmental bridges and in retrofitting damaged members has been established by several researchers. However, limited research has been conducted on comparable hybrid prestressed beams combining CFRP and steel tendons (hybrid steel-cfrp beams). This paper provides an insight on the flexural behaviour of eighteen prestressed beams tested under third-point loading until failure with the emphasis on the tendon materials (i.e., CFRP and steel) and bonding condition (i.e., bonded, unbonded). In addition, a comprehensive finite element analysis of the beams’ overall behaviour following the trussed-beam methodology is conducted and compared with the experimental results. Results show that hybrid beams, utilizing CFRP as the unbonded element maintained comparable performance when compared to hybrid steel beams. The results presented in this paper aim to expand the use of hybrid tendons and facilitate their incorporation into standard design provisions and guidelines.

DOI:

10.14359/51740646


Document: 

SP-360_33

Date: 

March 1, 2024

Author(s):

Wassim Nasreddine, Peter H. Bischoff, and Hani Nassif

Publication:

Symposium Papers

Volume:

360

Abstract:

The use of FRP tendons has become an attractive alternative to steel tendons in prestressed concrete structures to avoid strength and serviceability problems related to corrosion of steel. There is however a lack of knowledge in serviceability behavior related to deflection after cracking for beams prestressed with FRP tendons. Conventional approaches used to compute deflection of cracked members prestressed with steel is problematic at best, and the situation is exacerbated further with the use of FRP tendons having a lower modulus of elasticity than steel. Deflection of FRP reinforced (nonprestressed) concrete flexural members computed with Branson’s effective moment of inertia 𝐼􀀁 requires a correction factor (called a softening factor) that reduces the member stiffness sufficiently to provide reasonable estimates of post-cracking deflection. For FRP prestressed concrete however, this approach does not always work as expected and deflection can be either underestimated or overestimated significantly.

This study investigates the accuracy of different models proposed for estimating deflection of cracked FRP prestressed members using a database of 38 beams collected from the literature. All beams are fully prestressed. Results indicate that using Branson’s effective moment of inertia 𝐼􀀁 with a generic softening factor can produce reasonable estimates of deflection provided the 𝐼􀀁 response is shifted up to the decompression moment or adjusted with an effective prestress moment defined by an effective eccentricity of the prestress force. The former approach overpredicts deflection by 20% on average while the latter overpredicts deflection by not more than 5% based on the beams available for comparison. Assuming a bilinear moment deflection response overpredicts deflection by 12%, while an approach proposed by Bischoff (which also shifts the 𝐼􀀁 response upwards) overpredicts deflection by 23%. These last two approaches work reasonably well without the need for a correction factor.

DOI:

10.14359/51740645


12345...>>

Results Per Page