ABOUT THE INTERNATIONAL CONCRETE ABSTRACTS PORTAL

  • The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

International Concrete Abstracts Portal

Showing 1-5 of 1335 Abstracts search results

Document: 

SP-360_51

Date: 

March 1, 2024

Author(s):

Todor Zhelyazov, Eythor Rafn Thorhallsson, Jonas Thor Snaebjornsson

Publication:

Symposium Papers

Volume:

360

Abstract:

The study delves into modeling the interface between Fiber-Reinforced Polymer (FRP) and concrete, with a specific emphasis on simulating the gradual deterioration of bond strength. A model rooted in continuum damage mechanics is integrated with an empirically derived relationship to address interfacial shear failure. Material models are defined for the concrete, the externally bonded FRP reinforcement, and the adhesive layer. These material models are implemented in finite element simulations, replicating experimental setups widely used to investigate the FRP-concrete interface. Key results are reported and discussed. More precisely, the numerically obtained load-slip relationships for the interface and visualizations of the damaged zones in concrete are provided. The numerical results are in close agreement with existing experimental data. The finite element analyses suggest that concrete degradation is not limited to the areas near the adhesive joint. This implies that the adhesive joint could influence the overall behavior of the structural elements, even when debonding failures are prevented by anchorage devices.

DOI:

10.14359/51740663


Document: 

SP-360_39

Date: 

March 1, 2024

Author(s):

Ju-Hyung Kim and Yail J. Kim

Publication:

Symposium Papers

Volume:

360

Abstract:

This paper presents a new methodology for characterizing the failure mode of structural walls reinforced with glass fiber reinforced polymer (GFRP) bars. An analytical model is used to derive a non-dimensional failure determinant function, which is validated against existing test results. The function involves geometric attributes (wall length, wall height, and boundary element size), reinforcement ratios (horizontal and vertical), and material properties (compressive strength of concrete and tensile strength of GFRP bars). According to the determinant function, structural walls fail in flexure when a high aspect ratio is associated with a relatively low reinforcement ratio in the boundary element. The proposed methodology and design recommendations provide valuable guidance for practitioners dealing with GFRP-reinforced concrete walls.

DOI:

10.14359/51740651


Document: 

SP-360_47

Date: 

March 1, 2024

Author(s):

Bartosz Piątek and Tomasz Siwowski

Publication:

Symposium Papers

Volume:

360

Abstract:

Due to a dynamic development of infrastructure, engineers around the world are looking for new materials and structural solutions, which could be more durable, cheaper in the life cycle management, and built quickly. One of prospective solutions for building small-span bridges can be precast lightweight concrete reinforced with glass fiber-reinforced polymer (GFRP) rebars. Thanks to prefabrication, it is possible to shorten the construction time. Using lightweight concrete affects structure weight as well as transportation costs. GFRP rebars can make the structure more durable and also cheaper in terms of life cycle management costs. The paper focuses on the fatigue performance of a real-scale arch (10.0 m (33 ft) long, 1.0 m (3.3 ft) wide, and 2.4 m (7.9 ft) high) made of lightweight concrete and GFRP rebars (LWC/GFRP) in comparison with an arch made of normal weight concrete and typical steel reinforcement (NWC/steel). The fatigue loads ranging from 12 to 120 kN (2.7 to 27 kip) were applied in a sinusoidal variable manner with a frequency of 1.5 Hz. This research revealed that the NWC/steel arch exhibited significantly better fatigue resistance when compared to the LWC/GFRP arch. Differences in the behavior of the NWC/steel and LWC/GFRP models under fatigue load were visible from the beginning of the research. The LWC/GFRP model was exposed to fatigue loads, resulting in gradual deterioration at an early stage. This degradation was evident through stiffness being progressively reduced, leading to increased displacements and strains as the number of load cycles increased. The model did not withstand the fatigue load and was destroyed after approximately 390 thousand load cycles, in contrast to the NWC/steel model, which withstood all 2 million load cycles without significant damages or the stiffness being decreased. However, the prefabricated lightweight concrete arches with composite reinforcement seem to be an interesting alternative of load-bearing elements in infrastructure construction.

DOI:

10.14359/51740659


Document: 

SP-360_44

Date: 

March 1, 2024

Author(s):

Raphael Kampmann, Carolin Martens, Srichand Telikapalli, and Alvaro Ruiz Emparanza

Publication:

Symposium Papers

Volume:

360

Abstract:

While reinforced concrete is one of the most used construction materials, traditional reinforcement steel may cause undesirable side effects, as corrosion and the associated volume changes can lead to damages in the concrete matrix and can cause spalling, which may significantly reduce the load-bearing capacity and service life of structures. Alternative reinforcement methods, such as glass or basalt fiber reinforced polymer rebars, can serve as a viable alter-native to reduce or eliminate some of the disadvantages associated with steel reinforcement. In addition to an increased tensile strength and a reduction in weight, fiber reinforced polymer rebars also offer a high corrosion resistance among other beneficial properties. Because these materials are not fully regulated yet and the durability properties have not been conclusively determined, further research is needed to evaluate the material durability properties of FRP rebars. To determine the durability properties of GFRP and BFRP rebars in cold climates, the freeze-thaw resistance of these materials was evaluated throughout this study. Specifically, two types of materials (basalt and glass reinforced polymers) and two common rebar sizes (8 mm (#2) and 16 mm (#5) diameters) were tested. To quantify the freeze-thaw-durability, tensile tests according to ASTM D7205, transverse shear strength tests in line with ASTM D7617, and horizontal shear strength tests as specified in ASTM D4475 were conducted on numerous virgin fiber rebars and on fiber rebars that were subjected to 80 and 160 freeze-thaw cycles. While the results from the virgin materials served as benchmark values, the measurements and analysis from the aged (by freeze-thaw cycles) materials were used to quantify and determine the strength retention capacity of these bars. The results showed that a higher number of freeze-thaw cycles lead to lower strength retention for some rebar types. In addition, it was seen that rebar products respond differently to the aging process; while some material properties notably deteriorated, other material properties were insignificantly affected.

DOI:

10.14359/51740656


Document: 

SP-360_46

Date: 

March 1, 2024

Author(s):

Charles Tucker Cope III, Mohammod Minhajur Rahman, Francesco Focacci, Tommaso D’Antino, Iman Abavisani, and Christian Carloni

Publication:

Symposium Papers

Volume:

360

Abstract:

GFRP bars are considered an alternative to steel for concrete reinforcement. This project investigated the fatigue behavior of GFRP bars embedded in concrete, studying bond behavior at material and structural scales. GFRP bars (12 mm [0.47 in.] nominal diameter) were embedded in concrete cylinders leaving a 50 mm [2 in.] protrusion at the free end and featuring different bonded lengths. Two types of GFRP bars with different surface treatment (lacquered and unlacquered) were used. Static tests were used to determine the bonded length required for cyclic pull-out tests, Cyclic tests at 1.5 Hz showed GFRP bar failure was possible at just 20% of their reduced tensile strength (0.8ffu) as prescribed in ACI 440.1R-15. Two full-scale slabs internally reinforced with unlacquered GFRP bars were tested using a four-point bending configuration. A quasi-static test was used as a control to determine the fatigue amplitude, considering the fatigue loading provided by the ACI 440.1R-15 document and the pull-out test results with cyclic loading presented in this work. Cyclic load between 10 kN [2.25 kips] and 40 kN [9 kips] at a 1.5 Hz frequency was applied up to 5 million cycles before a subsequent quasi-static test was conducted. The load range was determined using cross-section analysis to cycle the bars between 5% and 20% of their reduced tensile strength (0.8ffu). Both slabs ultimately failed due to shear failure, with cyclic loading having little impact on the slab compliance. Displacements of the load points and supports were measured using linear variable displacement transformers (LVDTs), while digital image correlation (DIC) was utilized to obtain the full-field displacement and strain in the central region of the slab. The strain and displacement fields from DIC were used to determine the opening of flexural cracks and relate it to the stress level in the GFRP bars. A comparison between the static pull-out tests and the four-point bending tests of slabs indicated that the pull-out test could be used to describe the flexural behavior of the slab at low stress level. However, in terms of fatigue behavior, the comparison between the small- and large-scale tests indicated that the fatigue phenomenon in the slab was quite complex and could not be directly described by the results of pull-out tests.

DOI:

10.14359/51740658


12345...>>

Results Per Page