Factors Influencing Durability and Early-Age Cracking in High-Strength Concrete Structures

ABOUT THE INTERNATIONAL CONCRETE ABSTRACTS PORTAL

  • The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

International Concrete Abstracts Portal

  


Title: Factors Influencing Durability and Early-Age Cracking in High-Strength Concrete Structures

Author(s): W. J. Weiss, W. Yang, and S. P. Shah

Publication: Special Publication

Volume: 189

Issue:

Appears on pages(s): 387-410

Keywords: autogenous shrinkage; bridge decks; cracking; drying shrinkage; durability; fracture mechanics; high-strength concrete; pavements; slabs

Date: 1/1/2000

Abstract:
High strength concrete (HSC) typically exhibits improved surface abrasion resistance, reduced chloride penetrability, and improved resistance to freezing and thawing damage. For these reasons, HSC use in transportation structures is increasing due to the potential for increased service life. Although several potential benefits are associated with the use of HSC, these mixtures may exhibit increased sensitivity to early-age shrinkage cracking. In addition to weakening the structure, cracks increase the rate at which corrosive agents can penetrate the concrete, thereby accelerating the potential deterioration of the reinforcing steel and concrete. For this reason, it is essential that the concrete which is used to build transportation structures exhibits sufficient resistance to early-age cracking, in addition to the aforementioned benefits, to produce durable structures. The objective of this paper is to demonstrate that a holistic design approach is required to specify material composition for durable concrete structures. Experimental results and theoretical modeling predictions are used to illustrate the characteristics of higher strength concrete that result in increased cracking potential. Theoretical simulations demonstrate the role of both material properties and the surrounding structure on the tensile residual stress developemnt and cracking potential. In addition, results demonstrate that a shrinkage-reducing admixture (SRA) may be used to decrease the potential for early-age shrinkage cracking in HSC while sustaining the advantageous mechanical and durability properties associated with HSC.