ABOUT THE INTERNATIONAL CONCRETE ABSTRACTS PORTAL

  • The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

International Concrete Abstracts Portal

  


Title: Development of truck weight limits for concrete bridges using reliability theory

Author(s): L. M. FERREIRA, A. S. NOWAK, M. K. EL DEBS

Publication: IBRACON

Volume: 1

Issue: 4

Appears on pages(s): 421-450

Keywords: concrete bridges; reliability theory; live load model; bridge formula; truck weight regulations.

DOI:

Date: 12/30/2008

Abstract:
The increase in gross weight limits allowed by Brazilian legislation and the soaring number of new truck configurations on national highways has called for greater attention regarding the structural safety of bridges when submitted to real traffic. This paper verifies the performance of bridges under Sao Paulo Department of Transportation jurisdiction using the reliability index ß and obtains truck weight limits in order to guarantee structural integrity. The superstructures of reinforced and prestressed concrete bridges, classes 36 and 45, are considered. The ultimate limit state is verified in cross sections subjected to positive and negative critical bending moments. In case of prestressed bridges, the cracking limit state in concrete is added. The real traffic is represented by a live load model based on weighting data collected from stations located on highways of the state of Sao Paulo and the statistical resistance parameters are determined using the Monte Carlo technique. The gross weight limits are presented in the form of equations known as bridge formulas which are applicable to any group of two or more consecutive axles. The observed results indicate restrictions to the traffic of some vehicles, especially the 740 kN and 19.80 meters length truck. Considering only the serviceability limit state, class 45 bridges are found to exhibit lower weight limits due to the load factors recommended by the code during de


Brazilian Institute of concrete, International Partner Access

View Resource »